Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электропроводность, дифференциальные методы

К числу экспериментальных методов исследования процессов теплопроводности относится метод аналогии. При этом исследование тепловых явлений заменяется исследованием аналогичных физических явлений, которые, хотя и различаются по физической сущности, подчиняются одинаковым закономерностям и, следовательно, описываются одинаковыми дифференциальными уравнениями и условиями однозначности. В частности, аналогичны явления теплопроводности, диффузии, электропроводности и движения жидкости при ламинарном режиме.  [c.192]


Метод коаксиальных цилиндров применялся во многих работах (например, Л. 12—14]). Особенное распространение он имеет в тех случаях, когда исследуемое вещество взаимодействует с электрическим нагревателем или само становится электропроводным. Измерительные цилиндры могут выполняться из кварца (Л. 17], серебра, нержавеющей стали [Л. 12] и др. Метод коаксиальных цилиндров допускает достаточно точное измерение температурного перепада в слое исследуемого вещества с помощью дифференциальных термопар, что особенно важно для критической области параметров состояния и при исследовании веществ с высокой теплопроводностью.  [c.46]

Весьма широкое распространение при изучении фазовых превращений в системах получил термический анализ, особенно в модификации, связанной с записью кривых охлаждения или нагревания системы. При наличии фазовых превращений в системе плавный ход кривых нарушается вследствие выделения или поглощения теплоты кристаллизации или превращения на кривой появляются характерные изломы или изгибы. Часто применяется метод ДТА дифференциального термического анализа), когда одновременно измеряются температура и разность температур образца и эталона. Весьма эф( к-тивен комплексный вариант метода ДТА с параллельным измерением массы (термогравиметрия), объема, электропроводности и др.  [c.158]

Для изучения процессов теплообмена также используется метод аналогий. В этом случае исследование тепловых явлений заменяется изучением аналогичных явлений, поскольку их экспериментально исследовать легче. Необходимо, чтобы аналогичные явления описывались одинаковыми по форме дифференциальными уравнениями и условиями однозначности, несмотря на различное физическое содержание. При изучении процессов теплопроводности используется электротепловая и гидротепловая аналогии. В первом случае используется то обстоятельство, что явления теплопроводности и электропроводности описываются одинаковыми уравнениями, что позволяет вместо полей температур определять поля электрических потенциалов. Гидротепловая аналогия основана на сходстве законов распространения тепла и движения жидкости.  [c.80]

Эвтектоидиые превращенвя, 20. 282 Экстраполяция фазовых границ 36, 319 Электролитическая полировка 243 Электролитический метод выделения 374 Электролитическое травление 243 Электропроводность в зависимости от состава, кривые 295 Электропроводность, дифференциальные методы 3 01 Электропроводность, сверхструктур 303  [c.397]


Определение дозы коагулянта производится дифференциальным методой — измерением разности электропроводностей исходной воды и воды с присадкой коагулянта для чего использованы ячейки проводимости с постоянной С = 1,0 сл1 Т меется температурная компенсация для устранения влияния температуры воды на измерение дозь Сигнал от измерительного устройства поступает на электронный регулятор типа ЭР-Т, который поддерживает заданную ему дозу коагулянта, воздействуя через исполнительный механизм на регулирующий клапан, установленный на линии возврата реагента в расходный бак. Раствор коагулянта подается насосом — шестеренчатым или мембранным (что предполагалось в схеме Красоткина) можно использовать и плунжерный насос-дозатор. Системы с управлением по дозе коагулянта работают на нескольких установках. Это решение не является универсальным. Сам метод измерения дозы коагулянта применим лишь, для вод с малой минерализацией, причем и в этом случае возникают известные трудности из-за изменения во времени щелочности исходной воды. Для вод  [c.155]

Богомолов и др. сообщили об исследовании плавления 9-ан-гстремных кластеров Hg, Ga, Sn, Pb, In и d в полостях цеолитов NaX и NaA [629] и 8-атомных-кластеров In в цеолите NaA [630]. Образцы приготавливали путем заполнения под давлением полостей цеолитов, имеющих размеры 12 А, жидкими металлами. После снятия давления часть металла выдавливалась из полостей цеолита, причем этот процесс зависел от многих факторов (температура, геометрия каналов, природа металла, дефектность решетки цеолита). При отжиге образцов с In наблюдалось как уменьшение дефектности цеолитного каркаса, так и прекращение выдавливания металла после того, как в каждой полости оставалось по 8 атомов In [630, 631]. Температура фазового перехода определялась с помощью измерения температурных зависимостей теплоемкости, электропроводности (бесконтактным методом) и тепловых потерь (дифференциальным термическим анализом).  [c.213]

Для решения дифференциального уравнения Лапласа (81) может быть также применен экспериментальный метод электрической аналогии. В электрической модели с напряжениями, создаваемыми на контуре, распределение потенциалов внутри поля удовлетворяет уравнению Лапласа. Чаще всего плоскую электрическую модель изготавливают из электропроводной бумаги и исследуют на установках типа ЭГДА [16]. Этот метод позволяет определять величины сумм главных напряжений + Ог внутри контура модели, что в сочетании с данными поляризационно-оптического метода Oj — 02 дает возможность получать раздельно главные напряжения и (Ja-Линии равных сумм главных напряжений Oj + (jg (изопахики) могут быть определены и при помощи оптического прибора — интерферометра как линии равных приращений толщины модели. Интерферометр ИТ [17] позволяет определять Oj + на материалах с малой оптической чувствительностью (типа органического стекла). В результате наложения интерференционных картин в модели до и после ее загружепия образуются муаровые полосы, являющиеся изопахиками. При работе с оптически чувствительными материалами типа эпоксидных смол этот интерферометр с введенным в его схему анализатором позволяет определять абсолютную разность хода лучей, поляризованных в плоскостях, соответствующих напряжениям и Ог. Главные напряжения определяют в этом случае по отдельности через абсолютные разности хода  [c.69]

Как и в случае конечномерных динамических систем, в области задач об оптимальном управлении системами с распределенными параметрами сохраняют полную работоспособность усовершенствованные методы классического вариационного исчисления. При этом и здесь основное внимание было уделено составлению необходимых условий минимума для экстремальных задач со связями, трактуемыми как проблема Майера — Больца. Главным образом это было сделано для задач, связанных с уравнениями эллиптического типа. Было показано, что в таких типичных задачах, возникающих из проблем оптимального управления, необходимые условия стационарности (уравнение Эйлера и естественные граничные условия, а также условия Вейерштрасса Эрдманна) составляются при помощи обычных приемов. Критерии опираются снова на множители Лагранжа которые здесь зависят уже обычно от пространственных координат, а соответствующие дифференциальные уравнения снова конструируются исходя из подходящих форм функции Гамильтона. Условия стационарности дополняются необходимым условием Вейерштрасса сильного относительного минимума. Разумеется, это условие, которое записывается через условие экстремальности функции Гамильтона на оптимальных решениях, имеет смысл, аналогичный соответствующему условию принципа максимума. Важно, однако, заметить, что при работе с модификациями классических методов вариационного исчисления в случае уравнений с частными производными проявляются некоторые новые черты. В результате получаются условия оптимальности, более сильные, нежели известные в настоящее время обобщения принципа максимума на системы, описываемые уравнениями в частных производных. Упомянутые черты проявляются, в частности, в связи с тем обстоятельством, что приращение минимизируемого функционала при изменении объемного управления (за счет варьирования от оптимального управления) в пределах области достаточно малой меры зависит не только от вариации управления и меры области, но также существенно определяется и предельной формой области варьирования. Таким образом, получается, что при изменении формы области, определяющей вариацию, могут, получаться более или менее широкие необходимые условия экстремальности. Как отмечено выше, эффект анизотропии варьирования пока был получен только классическими методами. Причины этого, по-видимому, различны некоторые работы, посвященные принципу максимума, относятся к таким задачам, где этот эффект вообще не проявляется, в других случаях эффект анизотропии исключался вследствие ограничения при исследованиях лишь вариациями специального вида. Полезно также заметить, что описываемый эффект анизотропии расширяет возможность управления и оптимизации в обширном классе случаев независимо от типа исходных уравнений. Эффективность классических методов вариационного исчисления была проверена на конкретных типах задач. В частности, таким путем была исследована задача об оптимальном распределении проводимости электропроводной жидкости (газа) в канале магнитодинамического генератора электрической энергии. Эта задача как раз доставляет пример вариационной проблемы, где эффект анизотропии варьирования играет существенную роль. Развитию классических методов исследования посвящены работы К. А. Лурье.  [c.239]


Диаграмма состояния системы Аи — Zn, построенная по результатам работ [1, 4—10, 15—17 и 58], приведена на рис. 193. На рис. 193а приведен участок диаграммы состояния той же системы в области О—40 ат.% Zn по данным [58] в большем масштабе. На диаграмме рис. 193 не учтены данные [1] о наличии у цинка полиморфного превращения при 360°, так как эти выводы, сделанные на основании определения изменения электропроводности цинка в зависимости от температуры, не согласуются с результатами работы [18], выполненной весьма чувствительным методом термического анализа с дифференциальной записью, а также не были подтверждены и другими методами физико-химического анализа [19—23].  [c.297]


Смотреть страницы где упоминается термин Электропроводность, дифференциальные методы : [c.341]    [c.37]   
Диаграммы равновесия металлических систем (1956) -- [ c.301 ]



ПОИСК



Метод дифференциальный

Методы электропроводности

Электропроводность

Электропроводность, дифференциальные



© 2025 Mash-xxl.info Реклама на сайте