Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коэффициент использования максимума

Таким образом, коэффициент использования максимума нагрузки равен произведению коэффициента средней нагрузки установки за время ее работы и коэффициента рабочего времени. Так как нормально для современной станции е = 1, то и, следовательно,  [c.484]

Коэффициент использования максимума нагрузки равен отношению действительно выработанной энергии установкой Э к величине возможной наибольшей выработки ее при работе с максимальной нагрузкой за весь период времени -с, т. е.  [c.484]

Коэффициент использования максимума нагрузки станции  [c.486]


Ясно, что это условие будет отвечать и максимуму коэффициента использования  [c.533]

Задача 7.4. Определить число часов использования максимума нагрузки и коэффициент резерва электростанции, если площадь под кривой годового графика нагрузки станции i =8,5 10 " м, масштаб графика /и = 8,8 10 кВт ч/м , число часов использования установленной мошности Гу = 5500 ч и максимальная нагрузка станции 12,5 Ю" кВт.  [c.200]

В течение одиннадцатой пятилетки повышается годовой коэффициент использования среднегодовой мощности АЭС, рассчитанный с учетом графика ввода в действие новых энергоблоков и их вывода на проектную мощность с 71% в 1980 г. до 78 /о в 1985 г. Это может быть достигнуто при достаточно высокой эксплуатационной надежности АЭС, уже фактически имевшей место в десятой пятилетке, а также при условии продолжения работы АЭС и в одиннадцатой пятилетке, в основном в базисной части графика электрических нагрузок. На уровне 1985 г. суммарное годовое потребление электроэнергии в европейских районах СССР определяется примерно в 870 млрд. кВт-ч при совмещенном максимуме электрических нагрузок 146 млн. кВт и соответственно годовом числе часов использования максимума около 6000 (68%). В этих условиях участие АЭС в покрытии максимума будет на уровне 23% максимума нагрузок, что подтверждает реальность высокого годового использования мощности АЭС. В отдельных энергосистемах, например ОЭС Северо-Запада, число часов использования максимума нагрузок относительно низкое, а удельный вес АЭС более высокий, что, однако, не может ограничивать использование АЭС в силу наличия мощных электрических линий, которыми АЭС /присоединяются к ЕЭС СССР АЭС Северо-Запада (кроме Кольской), Центра и Юга — на напряжении 750 кВ, АЭС — Нововоронежская, Ростовская и Балаковская — на напряжении 500 кВ и АЭС — Армянская, Крымская и Кольская — на напряжении 330 кВ.  [c.143]

Эффективность же контактных экономайзеров существенно зависит от а) потребности предприятий в горячей воде б) характера потребления воды (графика нагрузки) в) числа часов использования максимума нагрузки г) доли горячего водоснабжения в тепловом балансе котельной в разное время года и суток д) степени напряженности работы котельной, т. е. соотношения между потребностью в тепле и теплопроизводительностью котельной е) наличия в д отельной хвостовых поверхностей нагрева и дымососной тяги ж) температуры уходящих газов и коэффициента избытка воздуха в газах з) необходимой температуры горячей воды и т. д.  [c.152]

Таким образом, метод коэффициента использования и коэффициента максимума, изложенный во Временных руководящих указаниях , нуждается в упрощении и дальнейшем усовершенствовании с учетом сделанных выше замечаний. Необходимо широкое проведение всесторонних исследований для получения фактических расчетных коэффициентов и определения удельных расходов энергии не только на промышленную продукцию в целом, но и на отдельные технологические операции и другие процессы.  [c.24]


Режим работы электрических станций оценивается коэффициентом использования установленной мощности, коэффициентом нагрузки, коэффициентом резерва, числом часов использования установленной мощности и числом часов использования максимума нагрузки.  [c.209]

Коэффициент использования металла т) , при плазменном напылении с применением в качестве плазмообразующего газа азота достигает 75%, а при применении аргона — 45%. Установлено, что эффективность напыления достигает максимума, когда отношение энтальпии к скорости истечения плазменной струи приблизительно соответствует 100 Дж-с/(л м). Дальнейшее увеличение отношения мало сказывается на эффективности напыления [64]. К другим параметрам, влияющим на эффективность использования материала при плазменном напылении, относятся расход газа, расположение плазмотрона по отношению к напыляемой поверхности. Увеличение расхода сверх оптимального его значения (устанавливаемого экспериментально) приводит к уменьшению т вследствие охлаждения дуги и увеличения скорости газа и частиц. С уменьшением расстояния от плазматрона до напыляемой поверхности с 140 до 60 мм при напылении окиси алюминия значение возрастает с 57 до 85% [51 ].  [c.221]

Величину коэффициента спроса и годовое число часов использования максимума нагрузки Т для химической промышленности принимают равными  [c.388]

Определение электрических нагрузок для расчета внутренних сетей и выбора трансформатора рекомендуется производить в соответствии с Указаниями по определению электрических нагрузок в промышленных установках методом коэффициентов использования и максимума нагрузок.  [c.221]

Перенос тепла излучением и оптическая термометрия тесно связаны, поскольку в обоих случаях необходимо иметь соотношение между термодинамической температурой и количеством и качеством тепловой энергии, излученной поверхностью. В конце 19 в. на основе только классической термодинамики и электромагнитной теории были получены два важных результата. Первый — закон Стефана (1879 г.), согласно которому плотность энергии внутри полости пропорциональна четвертой степени температуры стенок полости. Второй —закон смещения Вина (1893 г.), который устанавливал, что, когда температура черного тела увеличивается, длина волны максимума излучения Хт уменьшается, так что произведение ХтТ сохраняется постоянным. Доказательство закона Стефана основано на трактовке теплового излучения как рабочей жидкости в тепловой машине, имеющей в качестве поршня подвижное зеркало, и использовании электромагнитной теории Максвелла, чтобы показать, что действующее на поверхность давление изотропного излучения пропорционально плотности энергии. Закон Вина вытекает из рассмотрения эффекта Доплера, возникающего при движении зеркала. В обоих законах появляется постоянный коэффициент пропорциональности, относительно которого классическая термодинамика не могла дать информации.  [c.312]

Большое внимание при проектировании трактора уделяется оценке стабильности выходных параметров фрикционных узлов, обусловленной как принятой технологией изготовления и ее стабильностью, так и износами в условиях эксплуатации. В этом случае для определения деформации пружин и зазоров между дисками наряду с методом расчета по максимуму-минимуму широко используется теоретико-вероятностный метод расчета размерных цепей. Математическое ожидание деформации пружин и суммарного зазора и половина допуска на и.х величину рассчитываются по соответствующим формулам [21, 22]. Использование разработанных методик расчета позволяет еще при проектировании определять диапазон возможных изменений коэффициента запаса фрикционных муфт с учетом их конструктивных параметров, уровня технологии производства и условий эксплуатации.  [c.30]


Режим и структура электропотребления находят свое отражение в нагрузке энергосистем и наиболее характерно определяются суточными графиками нагрузки. По сравнению с основными развитыми капиталистическими странами графики наг1рузки энергетических систем в СССР являются более плотными, характеризуются высоким коэффициентом заполнения, что объясняется сравнительно большим удельным весом промышленности в общем потреблении электроэнергии. За 1975— 1980 гг. годовое число часов использования максимума нагрузки увеличилось на 210 ч, что было вызвано, в частности, проведением мероприятий по выравниванию графика нагрузок потребителями, а также напряженными режимными условиями в ЕЭС СССР. Необходимо отметить, что доля коммунально-бытовых и сельскохозяйственных потребителей непрерывно повышалась.  [c.99]

Пример 28. Турбина с противодавлением удовлетворяет тепловое отопительное потребление в размере 100 ж/час пара (при —30°). Число часов использования максимума равно 2 500 в году. Удельный расход пара 1сг1квтч. Коэффициент холостого хода л = 0,12. Длительность отопительного сезона —5 ООО.  [c.107]

Отношение действительной выработки электроэнергии к возмож-[ой ее выработке при сохранении в течение 24 ч максимума нагрузки (азывается коэффициентом использования суточного максимума  [c.61]

В 1961 г. Союзглавэнерго при Госплане СССР утвердило в качестве общего метода определения электрических нагрузок промышленных предприятий новый метод коэффициента использования и коэффициента максимума, изложенный во Временных руководящих указаниях по определению электрических нагрузок промышленных предприятий , именуемых ниже Временные руководящие указания [Л. 1-2,  [c.23]

Коэффициент максимума определяется по специальным таблицам и кривым для различных значений коэффициента использования и в зависимости от эффективного (приведенного) числа однородных по режиму работы электроприемников одинаковой мощности, которое обусловливает ту же величину расчетного максимума нагрузки, что и группа различных по мощности и режиму работы реальных приемников.  [c.24]

Непосредственно на реакцию образования покрытий N1—Р и N1—В затрачивается соответственно 70—90 % рецептурного количества гипофосфита и 20—30 % борана натрия. Остальное количество восстановителей подвергается каталитическому разложению на поверхности никеля. Большое влияние на работу раствора никелирования оказывают буферные и стабилизирующие добавки. В качестве первых используют органические кислоты — уксусную, лимонную, янтарную, малоновую или их соли. Обычно зависимость скорости реакции осаждения металла от концентрации буферной добавки проходит через максимум, положение которого определяется природой добавки. Поскольку процесс химической металлизации обычно сопровождается реакцией выделения водорода, то наличие буферных добавок позволяет поддерживать оптимальное значение pH во время металлизации. При этом буферные добавки способствуют ускорению реакции окисления восстановителя и увеличению количества выделяющегося водорода. Ускорение реакции окисления восстановителя вызывает рост скорости осаждения металла. Кроме того, в присутствии буферных добавок повышается коэффициент использования восстановителя.  [c.211]

Годовой расход электроэнергии на освещение Ао = МоКоТо кВт-ч, где N0 — установленная мощность осветительных электроприемников, кВт /Со — коэффициент спроса по мощности (0,6—0,9) То — годовое количество часов использования максимума осветительной нагрузки.  [c.375]

Коэффициент максимума Км в зависимости от эффективного числа электроприемников э и коэффициента использования /Си (по семейству кривых на рис. 2).  [c.11]

Рис. 2. Кривые коэффициентов максимума Км для различных коэффициентов использования Ки в зависимости от эффективного числа электроприемников Пз. Рис. 2. Кривые <a href="/info/219873">коэффициентов максимума</a> Км для различных <a href="/info/55089">коэффициентов использования</a> Ки в зависимости от эффективного числа электроприемников Пз.
На рис. 78 показано влияние концентрации и природы стабилизаторов на выход металла из раствора. Здесь кривые количество покрытия—концентрация стабилизатора проходят через максимум, значение которого связано с природой стабилизатора. Наибольшая скорость никелирования бывает при использовании в качестве стабилизатора ацетата талия. В этом же случае достигается и наиболее высокий коэффициент использования борогидрида. Однако в связи с тем, что поддержание оптимальной концентрации соединений таллия связано с определенными трудностями, рекомендуется применять стабилизаторы с более широким пределом концентраций, особенно смешанные меркаптофталевую кислоту (0,5 г/л) и ацетат свинца (0,04 г/л). При использовании раствора, содержащего (г/л) хлористый никель — 30, борогидрида натрия—1, этилендиамина — 60 мл/л pH 13—13,5 I — 90—95° С, применение в качестве стабилизаторов серосодержащих веществ, являющихся каталитическими ядами, дало результаты, указанные в табл. 82. Пределы допустимых концентраций серосодержащих добавок зависят от их природы и колеблются от 0,0003 г/л для тиофена до 10 г/л для мер ка птофта левых кислот. Максимальная скорость реакции достигается при оптимальной концентрации добавок. Стабилизирующие добавки позволяют также повысить коэффициент использо-  [c.155]

Частота появления ошибок, по-видимому, является наиболее легко определяемым параметром, поскольку стандартом для волоконно-оптических систем является одна ошибка на миллиард битов. Чтобы достичь этой частоты появления ошибок при скорости передачи данных в один Гбит/с при условии использования высококачественных лавинных фотодиодов, требуются минимальные мощности сигналов (60 нВт). При частоте появления ошибок в 1 Гбит/с этот уровень мощности дает в среднем 300 фотонов на бит (в предположении, что число битов во включенном состоянии равно числу битов в выключенном состоянии). Если произведение коэффициентов объединения по входу и разветвления по выходу составляет 100 миллионов (каждый из коэффициентов составляет около 10 000), то требуется средняя мощность излучателя, равная 6 Вт. В соответствии с указанной выше теоремой снижение необходимой мощности может быть получено при выборе диаметра тонкого волокна менее диаметра активной области фотодетектора. Для волокна с диаметром 75 мкм типичное отношение площадей волокна и фотодетектора может составлять /4, так что принципиально можно достичь снижения средней мощности излучателя до 1 Вт. На практике потери за счет состыковки волокна и неоднородности распределения световой мощности могут потребовать использования несколько больших мощностей излучателя, но влияние этих факторов может быть уменьшено путем соответствующего увеличения величины апертуры передачи света от излучателя до фотодетектора. Так как мощность излучателя в 1 Вт представляет собой практический предел для приемлемых видов излучателей, то теоретически максимальное значение произведения коэффициентов объединения по входу и разветвления по выходу составляет 100 000 000. С точки зрения возможных конструкций ОПЛМ теоретически возможно использование максимум 10000 излучателей, 10 000 фотодетекторов и 100 000 000 межэлементных соединений.  [c.247]


Для остальных электроприемников среднесменная нагрузка как основная составляющая расчетного максимума определяется с помощью соответствующих коэффициентов использования.  [c.87]

Для того чтобы завершить рассмотрение стандартных приложений законов черного тела, кратко охарактеризуем эффективность тех или иных источников при использовании их для целей освещения. Хорошо известно, что лампа накаливания с вольфрамовой нитью вошла в практику в конце прошлого столетия и сыграла громадную роль в условиях жизни и труда людей во всем мире. По сей день этот простой и удобный источник света широко используют в быту и на производстве. Многочисленные научные и инженерные исследования позволили увеличит] срок службы лампы накаливания и другие ее эксплуатационные качества, но мало что могли изменить в зф(1зективности этого источника света, т.е, в увеличении доли энергии, которая может быть использована для целей освещения окружающего пространства. Достаточно взглянуть на рис. 8.1, где изображена светимость черного тела для двух температур, а вертикальными линиями ограничена видимая часть спектра (4000 — 7000А), чтобы оценить, сколь малая доля излучения черного те.па может быть эффективно использована в этих целях, даже в том случае (Т = 5000 К), когда /-макс совпадает с зеленой областью спектра, в которой чувствительность глаза наибольшая. Расчеты показывают, что при этих оптимальных условиях лишь около 13% всей излучаемой энергии может быть использовано для освещения. Значительно меньшая часть энергии черного тела может быть утилизирована в том случае, когда его температура составляет примерно 3000 К и максимум излучения находится в инфракрасной области спектра (вблизи 1 мкм). Дальнейшее уменьшение температуры черного тела приведет к еще более низкому коэффициенту использова1шя излучаемой энергии.  [c.415]

Существующие методы аэродинамического расчета затупленных тел, оснащенных иглами, основаны на использовании соответствующих экспериментальных данных. При этом определение лобового сопротивления связано с нахождением распределения давления по обтекаемой поверхности головной части. На рис. 6.1.3 показаны опытные данные, характеризующие относительные величины коэффициента давления р/ртах на сферической головной части цилиндра с иглой при различных отношениях ее длины I к диаметру сферы Псф. В случае отсутствия иглы (НО сф 0) коэффициент давления р достигает своего максимального значения ртах в центре сферы (р/ртах= 1), а затем резко снижается до места ее сопряжения с цилиндром. Установка иглы существенно изменяет характер распределения коэффициента давления и его величину. При 1Юсф> 1 эта величина значительно уменьшается у основания иглы на сфере, причем зона пониженного давления сохраняется на значительной ее части. Вблизи места сопряжения отношение р/ршах достигает максимума. При этом для 1Юсф 1,5 оно оказывается несколько большим, чем в случае отсутствия иглы. При значительной  [c.386]

Практически измерения производились на стальной модели длиной 24 дюйма (61 см), шириной 6 дюймов (15,2 сл) в самом широком месте и максимальной толщиной 1 дюйм (2,5 см) (рис. 182). Падение потенциала вдоль края образца mnpq исследовалось с использованием чувствительного гальванометра, концы которого были подсоединены к двум острым иглам, закрепленным на постоянном расстоянии друг от друга в 2 мм. Когда иглы касались пластинки, гальванометр показывал падение потенциала на расстоянии между иглами. Передвигая иглы вдоль закругления, можно было найти место максимального градиента электрического напряжения и замерить его. Отношение этого максимума к градиенту напряжения в отдаленной точке m (рис. 182, а) дает величину коэффициента концентрации в формуле  [c.353]

Зависимость сопротивления сдвигу от уровня всестороннего давления (величины средних сжимающих напряжений), следующая по результатам работ [14, 187] и обсуждаемая в работе [188], влияет на ход кривой сжатия при нагрузке и разгрузке. Однако при условии, что упругий участок на кривой разгрузки не снижает давление до величины ниже нуля при экспериментальной регистрации движения свободной поверхности (или давления, соответствующего адиабате сжатия мягкого материала при регистрации давления на границе образца с мягким материалом), определение величины растягивающих напряжений как точки пересечения лучей, исходящих из максимума (точка 1) и минимума (точка 2) скоростей (давлений), автоматически учитывает зависимость сопротивления сдвигу от давления, поскольку влияние последнего сказывается только на положении точек 1 я 2 (штриховая диаграмма на рис. 117, а). Угловой коэффициент луча 2К при этом определяется жесткостью упруго-пластического сжатия в области отрицательных давлений. Из-за отсутствия в настоящее время данных о жесткости материала при одноосном деформировании в области растягивающей нагрузки приходится либо использовать жесткость, определенную при малых растягивающих нагрузках, либо принимать допустимым использование одного закона об1ъемного сжатия в плоских волнах для области растягивающих и сжимающих нагрузок. Следует отметить, что, по данным работы [21], давления до 100-10 кгс/см2 в стали 20 и алюминиевом сплаве В95 не оказывают существенного влияния на сопротивление сдвигу.  [c.230]

На рис. 6.6 показана зависимость максимального коэффициента потерь от отношения толщин демпфирующего материала и конструкции. Кривая на этом рисунке построена с использованием максимальных значений для кривых на рис 6.4. Следует отметить, что эти максимальные значения достигаются при различных температурах и частотах колебаний (рис. 6.4 и 6.5).. В силу этого возникают некоторые изменения свойств материала для различных конфигураций. При очень малых значениях отношений толщин демпфирующая способность увеличивается почти по линейному закону, однако при очень высоких значениях этого отношения максимум демпфирующей способности будет таким же, как и у вязкоупругого материала демпфирующего покрытия, когда коэффициент потерь равен (для1 данного примера) примерно 0,8.  [c.281]

Кроме того, авторы рекомендуют применять в расчетах те же зависимости для связи истинного объемного паросодержания с массовым, что и для адиабатного потока (5). В неадиабатных условиях указанные зависимости вряд ли будут подходящими в области, близкой к началу закипания, так как в момент образования первых пузырей средняя относительная скорость движения паровой фазы будет близка к нулю или даже отрицательна, и в условиях, когда максимум паросодержания находится на стенке, эмнирический коэффициент в первой из формул (5) будет существенно меньше единицы. Таким образом, использование формул (5) приводит к занижению величины истинного объемного паросодержания в рассматриваемой области.  [c.87]


Смотреть страницы где упоминается термин Коэффициент использования максимума : [c.484]    [c.203]    [c.14]    [c.198]    [c.118]    [c.521]    [c.349]    [c.396]    [c.7]    [c.8]    [c.56]    [c.11]    [c.125]    [c.66]    [c.154]    [c.437]    [c.34]   
Тепловые электрические станции (1949) -- [ c.484 ]



ПОИСК



Коэффициент максимума



© 2025 Mash-xxl.info Реклама на сайте