Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термометры сопротивления и методы измерения сопротивления

ТЕРМОМЕТРЫ СОПРОТИВЛЕНИЯ И МЕТОДЫ ИЗМЕРЕНИЯ СОПРОТИВЛЕНИЯ  [c.43]

Так, например, если температура калориметра измеряется термометром с точностью до 0,001° и подъем температуры в опыте около 1°, максимальная погрешность измерения разности температур — о, т. е. величины А/, равна 0,2% Чтобы увеличить точность измерения А/, надо или увеличить подъем температуры в опыте, или повысить точность его измерения. Однако увеличить подъем температуры больше чем до 3—5° без риска внести существенную ошибку в вычисление поправки на теплообмен невозможно (см. стр. 239). В этом можно убедиться, исследуя константу охлаждения калориметра. Точность измерения М может быть повышена соответствующим выбором термометра и метода измерения температуры (оптическое увеличение в случае ртутного термометра, повышение чувствительности электроизмерительных схем в случае термометров сопротивления или термопар и др.). При планировании проведения работы с данным калориметром следует выбрать термометр и способ измерения температуры, имея в виду необходимую точность результата.  [c.244]


Международная шкала температур представляет собой попытку воспроизвести термодинамическую стоградусную шкалу следующим методом. Выбирается ряд реперных точек, подлежащих измерению газовым термометром. Они выбираются так, чтобы, используя константу излучения 2 соответствующей величины, охватить область температур от —182,97 (точка кипения жидкого кислорода) до 1063°С (точка плавления золота) или более высоких температур. Между реперными точками в качестве интерполяционных инструментов используются платиновый термометр сопротивления и пла-тина-платинородиевая термопара. Термометр сопротивления применяется при значениях температуры от —182,97 до 660° С. Зависимость его сопротивления от температуры удовлетворяет обычному квадратичному закону постоянные определяются в точках льда, пара и серы для температур выше 0° С, тогда как четвертая реперная точка при —182,97° позволяет найти дополнительный член, необходимый для точного воспроизведения газовой шкалы ниже нуля.  [c.44]

Токосъемники со скользящими контактами вносят дополнительные погрешности в измерительную цепь. При использовании в качестве датчиков термометров сопротивления и тензодатчиков основные погрешности обусловлены переходным сопротивлением. При непосредственном измерении термопарных токов существенные погрешности вносят переходные сопротивления и контактная ЭДС, а при компенсационном методе измерения — только контактная ЭДС.  [c.319]

Повышение температуры поглотителя калориметра можно измерять разными методами. Часто пользуются термопарами и термостолбиками, болометрами или термометрами сопротивления. Методика таких измерений подробно изложена в литературе [18, 23].  [c.115]

Для дистанционного замера относительной влажности и температуры воздуха может быть использован прибор ИТВ-1. Он состоит из датчиков и приемной части. Датчики располагают в точках замеров с приемной частью кабелем длиной 50—-100 м. Приемная часть представляет собой настольный электрический аппарат, на передней стенке которого расположены измерительные приборы и устройства для управления работой. Блок датчиков температуры и влажности состоит из двух узлов температуры и относительной влажности. Узел температуры построен на принципе измерения температуры с помощью термометра сопротивления и специального мостикового устройства с нулевым методом измерения. Узел относительной влажности построен на принципе волосного гигрометра с дистанционным потенциометрическим снятием его показаний.  [c.106]


Предельно допустимые превышения температур обмоток (измеренные методом сопротивления) и коллектора (измеренное методом термометра) при продолжительном режиме тяговых машин следующие.  [c.35]

Материал сборника ограничен рассмотрением методов, которые можно с некоторым правом назвать классическими. В сборнике содержатся наиболее интересные статьи, которые освещают интенсивно развивающиеся методы термометрии. Работы, посвященные исследованию ртутно-стеклянных термометров, которые играют в современных измерениях подсобную роль, не вошли в сборник. Описание использования ртутно-стеклянных термометров можно найти в упомянутых выше книгах, содержащих также библиографические указания. Совершенно не включены методы построения шкалы в области низких температур на основе магнитных свойств, методы измерения в области низких температур с помощью бронзового и угольного термометров сопротивления и тому подобные методы, представляющие лишь специальный интерес. Не включены также работы по применению термисторов, представляющих заметный интерес для целей измерения и регулирования температуры в ряде специальных случаев.  [c.6]

В первой статье, после небольшого исторического введения, кратко рассматриваются методы измерения сопротивления термометра, причем наибольшее внимание уделяется методу моста и ошибкам, возникающим при измерении температуры.  [c.10]

Потенциометрический метод измерения сопротивления термометров (фиг. 38). Включённые последовательно в одну цепь с источником тока термометр сопротивления Я( и образцовое сопротивление присоединяются к потенциометру при помощи пере-  [c.733]

Потенциометрический метод измерения сопротивления термометров (рис. 6-10) прост и обладает высокой точностью. Этот метод может быть рекомендован лишь для измерения температур при стационарных процессах или при очень медленно изменяющейся температуре среды.  [c.118]

Вводная глава книги содержит краткое обсуждение понятия температура , обзор истории термометрии и вскрывает важное различие между первичной и вторичной термометриями. В гл. 2 рассматриваются истоки известных международных соглашений о термометрии, обсуждаются развитие и современное состояние Международной практической температурной шкалы. В гл. 3 рассмотрены главные методы измерения термодинамических температур, к которым относится газовая термометрия, акустическая термометрия и шумовая термометрия. В гл. 4 описаны реперные точки температуры, тройные точки и точки кипения газов, точки затвердевания и сверхпроводящие точки металлов. Здесь же рассмотрены требования к однородности температуры при сравнении термометров. Три последующие главы посвящены основным методам практической термометрии, термометрам сопротивления, термопарам и термометрии по излучению. Во всех главах, в том числе и во вводной, даны не только физические основы методов высшей точности, применяемых в эталонных лабораториях, но и их подробное описание. Приведены также примеры измерений температуры в промышленных условиях. Книга завершается краткой главой о ртутной термометрии. Каждая глава дополнена обширной библиографией.  [c.9]

Интенсивное изучение методов и техники точной реализации точек плавления и затвердевания металлов было проведено авторами работ [47—50] и [52—56]. Предел воспроизводимости, достигнутый при реализации точек затвердевания металлов, определяется скорее совершенством термометров, используемых для фиксации переходов, чем самими металлами. Необходимость обеспечить достаточную глубину погружения термометра в среду с измеряемой температурой является сложной проблемой (см. гл. 5). В зависимости от конструкции термометра требуется его погружение в зону однородных температур в пределах от 10 до 20 см, чтобы чувствительный элемент в пределах 0,5 мК соответствовал температуре окружения. Поскольку разница АТ между температурой чувствительного элемента и температурой окружения экспоненциально уменьшается с глубиной погружения, нет больших различий в глубине погружения для точки таяния льда, точки затвердевания олова и даже золота. Увеличение глубины погружения для разных конструкций термометров на 1,5—3 см приводит к уменьшению АТ примерно в 10 раз. В точках затвердевания металлов обычно можно обеспечить достаточную глубину погружения, однако при измерении платиновым термометром сопротивления температур других объектов всегда важным ограничением является однородность их температур. Поэтому выше 500 °С платиновым термометром трудно измерить температуру тела с точностью лучше 50 мК. Отметим в этой связи эффективность применения тепловых трубок для увеличения области очень однородной температуры.  [c.169]


В термометрии излучения в отличие от термометрии, основанной на применении термопары или термометра сопротивления, можно использовать уравнения в явном виде, которые связывают термодинамическую температуру с измеряемой величиной (в данном случае со спектральной яркостью). Это возможно потому, что тепловое излучение, существующее внутри замкнутой полости (излучение черного тела), зависит только от температуры стенок полости и совсем не зависит от ее формы или устройства при условии, что размеры полости намного больше, чем рассматриваемые длины волн. Излучение, выходящее из маленького отверстия в стенке полости, отличается от излучения черного тела лишь в меру того, насколько сильно отверстие нарушает состояние равновесия в полости. В тщательно продуманной конструкции это отличие может быть сделано пренебрежимо малым, так что равновесное излучение черного тела становится доступным для измерений. Таким образом, методы термометрии излучения позволяют в принципе измерить термодинамическую температуру с очень высокой точностью, что будет кратко рассмотрено в разд. 7.7.  [c.309]

Суш,ествуют различные приборы для измерения температуры нагретых тел (термометры расширения, электрические термометры сопротивления, термопары и т. д.). Однако для сильно нагретых тел (свыше 2000 С) эти методы измерения температуры непригодны. Кроме того, эти методы совершенно неприменимы, если раскаленные тела, температуру которых необходимо определить, чрезвычайно удалены от наблюдателя (например. Солнце, звезды). В этом, а также и в других случаях в качестве термометрического фактора можно использовать тепловое излучение.  [c.333]

В нулевом методе действие измеряемой величины полностью уравновешивается действием известной величины, так что их взаимный эффект сводится к нулю. В этом случае измерительный прибор (нулевой) служит лишь для установления факта уравновешивания. Нулевой метод обладает высокой точностью, которая определяется точностью воспроизведения образцовой меры и чувствительностью нулевого прибора (например, метод измерений электрического сопротивления термометра уравновешенным мостом).  [c.6]

Генерирование тепла при поглощении энергии ионизирующих излучений и ядерных реакций в материале датчика, а также механические воздействия, нанример вибрации, создают особые режимы работы и обусловливают специфические требования к такого рода термометрам. Поэтому многие известные методы измерения температуры неприменимы, так как свойства материала датчика при облучении могут значительно изменяться [23] (например, термометры сопротивления [225]).  [c.92]

Контактные методы измерения температуры безотносительно к типу измерительного преобразователя (табл. 3) отличаются вторжением в исследуемое пространство и возмущением там дополнительных тепловых потоков. Наиболее точными и перспективными в отношении автоматизации контроля температурных условий являются термометры сопротивления, термисторы и термопары.  [c.60]

В схеме рис. 3-4 напряжение Uq измеряется компенсационным методом по схеме автоматического потенциометра. Компенсирующим напряжением является напряжение, снимаемое с сопротивления Rq, которое при равновесии схемы равно Vq. Угол поворота двигателя 4 и кулачков 2, 3 (узел V) пропорционален расходу тепла Q. Шкала тепломера равномерная. В табл. 3-3 приведены методические погрешности в измерении тепла потока пара схемой рис. 3-4 Л. 18]. Как следует из табл. 3-3, при незначительной дополнительной методической погрешности AiQ можио отказаться от установки датчика температуры, заменив в схеме рис. 3-4 термометр сопротивления Rt постоянным сопротивлением. Принципиально термометр сопротивления следует уста-  [c.75]

Применяя электрические методы, можно вести дистанционные измерения температуры t и температурной разности i>. Для измерения t можно применить электрический термометр сопротивления — медный или платиновый (в зависимости от высоты температуры t) или термопару измерение й производится по схеме 3 гл. X. Это позволяет использовать печи полупромышленного типа и помещения холодильников.  [c.270]

На практике применение газовых термометров не представляется возможным при исследованиях обычно применяют различные описанные ниже другие средства измерения температуры термопары, термометры сопротивления. Показания этих приборов должны быть приведены к шкале идеального газа, и это обычно делается посредством нескольких фиксированных точек, температура которых тщательно определяется газовым термометром. Наиболее прямой метод заключается в измерении величин для выбранного свойства (например, электродвижущей силы термопары) в различных фиксированных точках, после чего вычерчивают график, выражающий зависимость этого свойства q от температуры t. Иногда результирующая кривая выражается уравнением  [c.91]

В технике прочностных испытаний наибольшее распространение получили электрические контактные термометры (термоэлектрические термометры - термопары и термометры сопротивления) и пирометры, основанные на методах измерения температуры тел по их излучению [1, 38].  [c.275]

Четыре первых члена этой формулы характеризуют влияние погрешностей электрических величин, необходимых для вычисления количества тепла, выделяемого электрическим током. Ясно, что для уменьшения этих погрешностей надо использовать амперметр и вольтметр высокой точности, причем сопротивление обмотки вольтметра должно быть большим. Однако для проведения наиболее точных экспериментов следует вообще отказаться от схемы, использующей амперметр и вольтметр, и применить метод компенсации. При этом калориметрический нагреватель включается по четырехпроводной системе и вся измерительная схема выглядит аналогично схеме для измерения сопротивления термометра сопротивления (рис. 3-11). только в случае необходимости к потенциометру добавляется делитель напряжения. Применение метода компенсации позволяет существенно уменьшить ошибки измерения напряжения и силы тока нагревателя, а ошибка, зависящая от сопротивлений вольтметра и нагревателя, выпадает совсем.  [c.271]


Для измерения температуры и, которая изменягтся с течением времени и притом в одну сторону, т. е. монотонно (если исключить из рассмотрения иррегулярный режим, во время которого возможно и не монотонное изменение и), мы пользуемся чаще всего термопарами и только в некоторых случаях применяем ртутные стеклянные термометры. Некоторые из экспериментаторов применяли миниатюрные электрические термометры сопротивления, и довольно успешно конечно, эти термометры допускают, вообще говоря, большую точность измерений, чем все другие, однако громоздкость требующейся здесь электроизмерительной аппаратуры заставляет нас воздерживаться от рекомендации методов, основанных на применении термометров сопротивления.  [c.177]

Прежде чем обсуждать экспериментальные и теоретические исследования в области термометрии по сопротивлению, основанной на измерении сопротивления частично сверхпроводящих материалов, полезно сделать обзор возможностей использования для термометрии нормально проводящих металлов в области температур ниже 7° К. Этот верхний предел выбран потому, что он является наивысщей температурой, до которой применялись термометры сопротивления, изготовленные из частично сверхпроводящих материалов. Тем самым он определяет область температур, в которой может быть произведено сравнение различных методов. Применение термометров сопротивления в области более высоких температур весьма подробно обсуждалось в других статьях настоящего сборника.  [c.189]

Вскоре И. А. Роговая и М. Г. Каганер [127] исследовали сжимаемость аргона в интервале температур —183- 0° С при давлениях до 200 атм. Экспериментальная установка, описанная авторами ранее [128], работала по методу пьезометра постоянного объема. Количество вещества в пьезометре определялось объемным способом с помощью трех калиброванных сосудов, помещенных в термостат. Температуру измеряли образцовым платиновым термометром сопротивления, погруженным в криостат, а равномерность распределения температур в последнем контролировали с помощью дифференциальных термопар. Во время опытов температура криостата поддерживалась постоянной с погрешностью 0,01 град при помощи фотоэлектронного терморегулятора. Температура в термостате регулировалась с погрешностью 0,05 град при этом использовался контактный ртутный термометр. Для измерения давления газа служил поршневой манометр. Масло, заполняющее манометр, отделялось от исследуемого газа с помощью мембранного дифференциального манометра и ртутного уравнителя благодаря последнему снижалась погрешность измерений разности давлений до 0,01 % абсолютного давления. Давление газа в калиброванных сосудах измерялось ртутным манометром с погрешностью 0,05 мм рт. ст.  [c.100]

В книге английского ученого Т. Куинна, заместителя директора Л еждународного бюро мер н весов, обобщены результаты развития термометрии за последние 25 лет в интервале температур от 0,5 до 3000 К и обсуждается ее современное состояние. Подробно рассмотрены принципы построения термодинамической и практических температурных шкал, возможности различных методов точного измерения термодинамической температуры, термометры сопротивления н термопары, реперные точки температурных шкал, перспективы совершенствования действующей сегодня МПТШ-б8, а также некоторые наиболее важные случаи измерения температуры в промышленных условиях.  [c.4]

Наибольшие трудности встречает сегодня выбор метода воспроизведения будущей МПТШ в интервале 13,8—24 К. Традиционная схема с платиновым термометром, градуированным в реперных точках, неизбежно потребует применения точек по температурам кипения водорода со всеми их недостатками, поскольку здесь просто не существует тройных точек в числе, достаточном для точного вычисления поправочной функции. Отметим, что пока не удалось получить удовлетворительных результатов для тройной точки дейтерия вблизи 18 К. Это связано, по-видимому, с недостаточной изученностью процессов орто-пара конверсии. К этому добавляются характерные для измерений с платиновым термометром в этом интервале температур проблемы их стабильности. Преимущество традиционного метода состоит в возможности перекрыть большой интервал температур единственным и очень широко применяемым прибором, каким является платиновый термометр сопротивления.  [c.7]

До недавнего времени было принято считать, что для МПТШ обязательно, чтобы температуры в данном интервале воспроизводились только одним методом. Выполнение этого требования автоматически обеспечивает единство измерений температуры. Однако редакция МПТШ-68 1975 г. допускает при градуировке платиновых термометров сопротивления использовать с равным правом тройную точку аргона пли точку кипения кислорода. В настоящее время нет никаких указаний на то, что такая двойственность привела к заметным расхождениям результатов измерений. Опыт успешной эксплуатации ПТШ-76, где с равным правом допускается воспроизводить шкалу несколькими весьма различными, но хорошо исследованными методами, также позволяет считать указанные выше формальные требования неоправданно жесткими. Можно полагать поэтому, что разумное отступление от метрологического пуризма и применение на равных основаниях обоих указанных выше методов воспроизведения МПТШ от 13,81 до 24 К не сможет привести к экспериментально ощутимым потерям в единстве измерений температуры.  [c.8]

Следующий метод шумовой термометрии основан на измерении произведения шумового напряжения и шумового тока, которые возникают в сопротивлении. Этот метод, разработанный Борковским и Блалоком [6], обладает существенным преимуществом. Для определения температуры Т не требуется знать величину сопротивления [3, 4]. На рис. 3.17 показана блок-схема измерительной системы Борковского и Блалока, позволяющая измерить мощность источника шума. Шумовой ток, возникающий в сопротивлении R, определяется соотношением  [c.118]

В разделе, посвященном техническим термометрам сопротивления, были кратко описаны основные приборы и методы измерений. Для исчерпывающего разбора данного вопроса и конкретных измерительных схем потребовалась бы отдельная книга. Как уже упоминалось в начале данной главы, в этой области измерений происходит быстрый прогресс благодаря все более щирокому использованию микропроцессоров.  [c.231]

В технике для измерения температур используют различные свойства тел расширение тел от нагревания в жидкостных термометрах изменение объема при постоянном давлении или изменение давления при постоянном объеме в газовых термометрах изменение электрического сопротивления проводника при нагревании в термометрах сопротивления изменение электродвижущей силы в цени термопары при нагревании или охлаждении ее спая. При измерении высоких температур оптическими пирометрами используются законы излучения твердых тел и методы сравнения раскаленной гшти с исследуемым материалом.  [c.15]

Чтобы получить достаточно высокую точность измерения электрических величин, нужно выбрать амперметр и вольтметр не только высокого класса точности, но и с такими пределами измерения, чтобы измеряемые в опыте величины были близки к пределу прибора. Наиболее высокая точность измерений может быть получена в случае применения потенциометрического метода с четырехпроводной схемой. Электрическая схема в этом случае аналогична схеме измерения сопротивления термометра сопротивления (см. рис. 3.14) с тем лишь отличием, что дополнительно используется делитель напряжения, так как падение напряжения на нагревателе составляет обычно несколько вольт и не может быть измерено на потенциометре. Большое внимание должно быть уделено обеспечению стабильности напряжения во время опыта, так как его колебания увеличивают случайную погрешность измерений. Поэтому при точных измерениях теплоемкости для питания калориметрического нагревателя применяют батарею аккумуляторов большой емкости.  [c.105]


Измерение температуры стенки опытной трубы производилось методом Маркбант [16] с использованием самой трубы в качестве термометра сопротивления. При этом измерялась средняя интегральная температура трубы по длине и сечению. Средняя температура стенки внутренней поверхности трубы определялась по формуле  [c.199]

Приемник платинового термометра сопротивления представляет собою довольно сложную систему, и особенности применяемой при эталонировании электроизмерительной аппаратуры сильно затрудняют отсчет мгновенных значений сопротивлений Rf термометра, не говоря уже о том, что переход от Rf к температуре связан с громоздкими и длительными вычислениями. Таким образом, прямой отсчет по термометру при измерении меняющейся его температуры должен быть исключен. Эгого мы достигаем, применяя изложенный выше универсальный метод определения s. Из него вытекает следующая методика эксперимента. Внутри приемника прибора укрепляют один из спаев дифференциальной термопары U (рис. 67), другой ее спай Т погружают в ванну, температура которой t остается постоянной температура приемника в момент погружения не равна t.  [c.223]

Коэффициент теплопроводности жидкостей измеряется обычно каким-либо из двух методов. По первому методу жидкость помещают между цилиндрическими поверхностями, а по второму — между плоскопараллельными. Коэффициент теплопроводности выражается в ккал см я град) или в ккалЦм ч град или в соответствующих британских единицах. Недавно разработан удобный и надежный метод определения коэффициента теплопроводности. По этому методу измеряется количество тепла, необходимого для повышения температуры данного количества жидкости на заданное число градусов в точно определенных условиях испытания. Измерительный прибор представляет собой пробирку из свинцового стекла в пробирку (вдоль продольной оси) впаяна прямая платиновая нить. К концам нити припаяны выводы для подачи напряжения таким образом, прибор подобен обычному платиновому термометру сопротивления. Сопротивление нити можно измерять при помощи стандартного измерительного моста. Такой метод обеспечивает исключительно хорошее совпадение расчетных и измеренных значений для некоторых широко применяющихся органических жидкостей и для ряда продуктов, перспективных с точки зрения их использования в качестве жидкостей для гидравлических систем. Разработан также метод определения коэффициента  [c.111]

Термометры сопротивления имеют большое преимущество при весьма точном измерении относите-льно низких температур в условиях, когда величина теплоемкости измерительного прибора не играет роли. Таким образом, эти приборы могут применяться в контроллерах и регуляторах до 1000°. Однако ДЛ1Я большинства работ, связанных с построением диаграмм равновесия металлических систем, лучше применять термопары. По этой причине мы здесь не касаемся деталей метода с применением термометра сопротивления. Эти вопросы подробно освещены в литературе [65, 66].  [c.111]

Степень приближения Международной практической температурной шкалы к термодинамической определяется тем, что вонпервых, числовые значения первичных, а также и вторичных постоянных точек практической шкалы получены в результате газотермических измерений, т. е. с некоторыми погрешностями, а во-вторых, тем, что выше точки затвердевания золота измерения основаны на термодинамическом методе (методе оптического пирометра), в котором связь между измеряемой температурой и яркостью тела устанавливается в соответствии с законом Планка. Однако на других участках практической шкалы от —182,97 до ЮбЗ С температура определяется по показаниям платинового термометра сопротивления или платинородий-платиновой термопары, шкалы которых не совпадают с термодинамической шкалой в промежутках между реперными точками. Некоторые данные о расхождениях между этими шкалами приведены в Положении о Международной практической температурной шкале [2].  [c.71]


Смотреть страницы где упоминается термин Термометры сопротивления и методы измерения сопротивления : [c.290]    [c.111]    [c.227]    [c.32]    [c.81]    [c.222]    [c.516]    [c.422]    [c.46]    [c.431]    [c.453]   
Смотреть главы в:

Теплотехнические измерения и приборы  -> Термометры сопротивления и методы измерения сопротивления



ПОИСК



Измерение методы

Измерение сопротивления

Измерение сопротивления термометра

Компенсационный метод измерения сопротивления термометра

Методы измерения сопротивлении

Методы измерения сопротивления термометров

Методы измерения сопротивления термометров

Методы сопротивления

Термометр

Термометр сопротивления

Термометрия

Термометрия измерение сопротивлений



© 2025 Mash-xxl.info Реклама на сайте