Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Физический маятник. Теорема Гюйгенса

ФИЗИЧЕСКИЙ МАЯТНИК. ТЕОРЕМА ГЮЙГЕНСА  [c.140]

Таким образом, если ось качаний физического маятника сделать осью привеса, то прежняя ось привеса станет его осью качаний. Это положение составляет содержание теоремы Гюйгенса о свойстве взаимности оси привеса и оси качаний физического маятника.  [c.216]

Теорема 6.4.1. (Гюйгенс). Точка подвеса физического маятника и центр качания суть точки взаимные. Если центр качания принять за точку подвеса, то прежняя точка подвеса будет центром качания. Период колебаний маятника при этом не изменится.  [c.459]


Если от точки привеса О отложить по линии ОС приведенную длину физического маятника I, то получим точку 0 , которая называется центром качаний. Для приведенной длины физического маятника справедливы следующие теоремы Гюйгенса  [c.429]

Теорема о связи между моментами инерции относительно параллельных осей дает возможность доказать важную теорему о центре колебаний физического маятника, найденную X. Гюйгенсом ).  [c.86]

Это положение составляет содержание теоремы Гюйгенса о свой стве взаимности точки подвеса и центра качаний физического маятника.  [c.685]

Теорема Гюйгенса. Если физический маятник подвесить за центр качания, то он будет колебаться с тем же периодом.  [c.180]

Точку О (рис. 135), лежащую на прямой, соединяющей точку О подвеса и центр тяжести С на расстоянии /п от точки подвеса, называют центром качания данного физического маятника. По теореме Гюйгенса (17.8), 1 = 1о + пгР, где /о — момент инерции относительно оси, параллельной оси вращения и проходящей через центр тяжести маятника. Тогда /,[ = /о/(ш/)+/, т. е. центр качания  [c.172]

Экспериментальное определение ускорения g силы тяжести. На теореме Гюйгенса основывается применение физического маятника для экспериментального определения ускорения силы тяжести. Для этого употребляется так называемый оборотный маятник. Он представляет собой физический маятник, с которым соединены две параллельные оси (ребра призм), содержащие в своей плоскости и на различном расстоянии от них центр тяжести маятника кроме того, оси расположены так, что маятник может качаться около каждой из них совершенно одинаково. В силу предыдущей теоремы расстояние I между обеими осями равно длине математического изохронного маятника, так что продолжительность Т одного простого качания при малых амплитудах будет приблизительно выражаться (гл. I, п. 38) так  [c.16]

Две гипотезы Гюйгенс принимает как аксиомы. Первая из них — энергетический принцип, равносильный теореме живых сил для консервативного поля земного тяготения если любое число весомых тел приходит в движение благодаря их тяжести, то общий центр тяжести этих сил не может Ш подняться выше, чем он был в начале движения Вторая гипотеза дополняет первую и характеризует рассматриваемую схему Допустим, что нет сопротивления воздуха и других помех движению, допущение, которое мы будем принимать и в дальнейших доказательствах,— в таком случае центр тяжести колеблющегося механизма (физического. — И. П.) при спуске и подъеме пробегает одинаковые пути . Основным в дальнейшем является предложение Дан маятник, состоящий из произвольного числа частей множат вес каждой части на квадрат ее расстояния от оси колебаний. Если сумму этих произведений разделить на произведение, получающееся от умножения общего веса частей на расстояние общего центра тяжести от той же оси колебаний, то получается длина простого маятника, изохронного с данным сложным маятником, или расстояние между осью колебаний и центром качаний сложного маятника . Тем самым здесь впервые вводится величина, пропорциональная моменту инерции (вместо массы, что соответствовало бы современному определению, Гюйгенс вводит вес-тела это не влияет на результат, так как статический момент , стоящий в знаменателе формулы для приведенной длины физического маятника, тоже вычисляется с заменой масс весами).  [c.111]


Эту точку будем называть точкой качания (центром качания) физического маятника. Обозначим момент инерции твердого тела относительно оси, проходящей через центр масс и параллельной оси г, через Мр , число р назовем центральным радиусом инерции. По теореме Гюйгенса — Штейнера будем иметь  [c.388]

Докажем, что приведенная длина Ь физического маятника всегда больше расстояния а. В самом деле, па основании теоремы Гюйгенса  [c.419]

Период колебаний физического маятника (а, следовательно, и его приведенная длина I) немонотонно зависит от расстояния а. Это легко заметить, если в соответствии с теоремой Гюйгенса-Штейнера момент инерции J выразить через момент инерции относительно параллельной горизонтальной оси, проходящей через центр масс J = J + та . Тогда период колебаний (1.14) будет равен  [c.9]

Представляя по теореме Гюйгенса—Штейнера ( 12.4) момент инерции тела относительно оси г в виде / — /с + Ма где /с — момент инерции тела отиосительно оси, проходящей через центр тяжести тела параллельно оси г, получим для приведенной длины физического маятника выражение  [c.508]

ТЕОРЕМА [взаимности (перемещений перемещение точки А под действием силы, приложенной в точке В, равно перемещению точки В под действием силы, приложенной в точке А работ работа первой силы на перемещении точки ее приложения под действием второй силы равна работе второй силы на перемещение точки ее приложения под действием первой силы ) Гульдена — Панна ( площадь поверхности, полученной вращением дуги плоской кривой (или ломаной линии) вокруг оси, лежащей в ее плоскости, но ее не пересекающей, равна длине этой дуги, умноженной на длину окружности, описанной центром тяжести объем тела вращения, образованного вращением плоской фигуры вокруг оси, лежащей в плоскости этой фигуры и ее не пересекающей, равен произведению площади этой фигуры на длину окружности, описанной центром тяжести площади фигуры ) Гюйгенса точка подвеса физического маятника и центр качания суть точки взаимные Гюйгенса — Штейнера момент инерции тела относительно некоторой оси равен сумме момента инерции тела относительно оси, проходящей через центр масс параллельно данной, и произведения массы тела на квадрат расстояния между ними о движении центра масс ( центр масс системы движется как материальная точка, масса которой равна массе всей системы и к которой приложены все внещние силы, действующие на систему тела с переменной массой центр масс тела с переменной масой движется как точка затвердевшей массы, в которой сосредоточена масса тела в данный момент и к которой приложены главный вектор активных внешних сил и главный вектор реактивных сил ) Жуковского если силу, приложенную к какой-либо точке звена плоского механизма, перенести параллельно самой себе в одноименную точку повернутого плана скоростей, то момент этой силы относительно полюса плана скоростей будет пропорционален ее мощности ]  [c.282]

К сожалению, доказательство этого фундаментального результата не раскрывает того, каким путем шел Гюйгенс доказательство проведено методом от противного , т. е. показано, что, допустив неизохронность колебаний физического маятника и математического маятника длины, определенной в условии теоремы, мы приходим к противоречию с первой гипотезой (энергетическим принципом Гюйгенса).  [c.111]


Смотреть главы в:

Теоретическая механика  -> Физический маятник. Теорема Гюйгенса



ПОИСК



Гюйгенс

Гюйгенса маятник

Маятник

Маятник физический

Теорема Гюйгенса



© 2025 Mash-xxl.info Реклама на сайте