Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стержни — Деформации — Изменения в точке удара

Стержни — Деформации — Изменения в точке удара 396, 397  [c.557]

Стержневые ящики 5 — 31 Стержни — Деформации — Изменения в точке удара 3 — 396, 397  [c.476]

Фиг. 11. Изменение деформаций стержня в точке удара при различных отношениях х массы Фиг. 11. Изменение деформаций стержня в точке удара при различных отношениях х массы

Фиг. и. Изменение деформаций стержня в точке удара при различных отношениях х массы стержня к массе груза.  [c.436]

Влияние массы стержня на напряжение при ударе. В предыдущих выводах мы пренебрегали частью энергии, затрачиваемой на то, чтобы сообщить скорость элементам ударяемого стержня. Это равносильно допущению, что в момент удара скорость ударяющего груза остается неизменной. В действительности, названная скорость изменяется до тех пор, пока груз и часть стержня, находящаяся с ним в соприкосновении, не приобретут общую скорость. В то же время вследствие происходящих деформаций, скорости частей стержня по мере удаления от места соприкосновения с ударяющим грузом изменяются, а закрепленные концы стержня имеют скорость, равную нулю. В результате закон изменения скоростей деформирующегося стержня оказывается весьма сложным и изменяющимся во времени, вплоть до того, что в некоторые моменты удара ударяющий груз и соприкасающаяся с ним часть стержня при определенных условиях получают разные скорости. В связи с этим точная оценка влияния массы ударяемого стержня на его напряженное состояние представляет значительные трудности. Однако удовлетворительную точность при определении потери энергии на сообщение скоростей элементам ударяемого стержня можно получить, заменяя стержень свободным твердым телом, кинетическая энергия которого равна кинетической энергии стержня в момент удара. При этом делается допущение, что закон распределения скоростей по длине стержня аналогичен закону изменения перемещений при статическом действии нагрузки.  [c.437]

Так как при отражении от левого конца стержня (также свободного) импульс растяжения снова превратится в импульс сжатия, то через время после удара характер деформации в стержне будет такой же, как и в момент удара. Наряду с импульсом деформации по стержню распространяется с той же скоростью и импульс скоростей ), причем, как было показано в 113, этот последний отражается от свободных концов стержня без изменения знака скорости. Поэтому через время после удара характер не только деформации, но и скоростей будет таким же, как в момент удара. Если потерями энергии при распространении импульсов в стержне и отражении от его концов можно пренебречь, то через время должны повторяться не только характер деформации и скоростей, но и их величины.  [c.659]

При переходных режимах вынужденным колебаниям сопутствуют свободные, соответствующие начальным условиям. При мгновенном приложении нагрузки или при мгновенном изменении какой-либо из координат (например, при мгновенном перемещении одной из опор) в системе происходит удар. При этом, как и в системах с конечным число.м свободных координат, движение начинается в точке приложения мгновенного возмущения и лишь постепенно распространяется на остальные части системы. При этом образуется бегущая волна, как это поясняет рис. 8.25, на котором изображен заделанный одним конном стержень, к свободному концу которого внезапно приложена нагрузка. Здесь показана примерная упругая линия этого стержня в последовательные моменты времени. Скорость распространения волны деформации и ее форма (крутизна) зависят от параметров системы (от соотношения распределенных масс и упругости, иными словами, от соотношения собственных частот нормальных форм и времени приложения внешней нагрузки). Вследствие постепенности распространения деформации при ударных нагрузках в зоне их приложения возникают динамические напряжения, которые могут во много раз превысить статические, т. е. те, которые соответствуют весьма медленному нагружению системы. Поэтому появление ударных нагрузок в машинах крайне нежелательно.  [c.234]


Уравнение, описывающее распространение одномерной волны в упругой среде, можно получить, рассматривая показанный на рис. 15.4(6) малый слой стержня, по которому произведен удар. Если перемещение в направлении х обозначить через и, то продольную деформацию е элементарного слоя можно подсчитать, разделив изменение его длины на начальную длину dx. Таким образом,  [c.504]

Целью экспериментов Данна было построение динамической кривой напряжение — деформация при конечной деформации для медного цилиндра, подверженного удару падающего груза. Фундаментальные квазистатические допущения, сделанные при интерпретации результатов, лежат в основе всех расширенных квазистати-ческих опытов, начиная с экспериментов 1897 г. и кончая самыми последними опытами 60-х гг. нашего века с составным стержнем Гопкинсона . Вплоть до появления в 1940-х гг. приборов, емкостных и электрического сопротивления, не было существенных изменений по сравнению с фундаментальным экспериментом Данна, несмотря на большое количество экспериментаторов, работавших в каждом десятилетии обсуждаемого периода, которые либо утверждали, что они открыли этот эксперимент, либо приписывали его открытие кому-то другому.  [c.199]

Пример продольного удара представлен на рис. 245, где груа С падает на заплечики стержня с высоты /г. Вследствие большой скорости приложения ударной нагрузки процесс деформирования стержня при этой нагрузке должен существенно отличаться от того, какой мы имеем при статическом ее приложении. В самом деле, известно, что упругая деформация распространяется в теле со скоростью, равной скорости распространения в нем звука. Скорость эта очень велика, тогда как скорость приложения статической нагрузки, а следовательно, и скорость возрастания деформаций стержня малы. Поэтому к моменту, когда статическая нагрузка достигнет своей окончательной величины, деформация успевает распространиться на всю длину стержня. При ударной нагрузке, если длина стержня не очень мала, за очень короткое время удара деформации распространяются лишь на некоторую часть длины стержня. Таким образом, действие ударной нагрузки концентрируется лишь на некотором участке длины стержня, вследствие чего деформации оказываются большими, чем при статической нагрузке. После окончания приложения ударной нагрузки эти деформации распространяются на следующий участок длины стержня, в то время как на первом участке они убывают до величин статических деформаций, и т. д. В результате мы получаем волновой харак тер распространения деформаций, а следовательно, и напряжений по длине стержня, причем волны деформаций и напряжений, достигнув защемленного конца, отражаются от него, создавая деформации и напряжения обратного знака. Эти явления еще осложняются тем, что при распространении деформации по длине стержня силы инерции масс частей стержня оказываются различными. Еще большие осложнения вносит пластическая деформация, если она происходит, так как скорость ее распространения, в отличие от упругой деформации, не постоянна, а изменяется с изменением соответствующего ей напряжения. Таким образом, напряженно-деформированное состояние стержня при ударном приложении нагрузки оказывается весьма сложным, причем продольный удар сопровождается всегда продоль-  [c.432]

ШИ относительных перемещений точек при деформации можно пренебречь. Остальные гипотезы, к-рыми пользуется С. м., здесь устранены первоначально в развитии теории упругости они или подтверждаются вполне, или частью, с известным приближением, или отвергаются в связи с анализом отдельных деформаций. Элементарные теории растяжения, кручения круглых брусков, чистого изгиба вполне согласуются с теорией упругости. Изгиб в присутствии срезывающих сил, как оказывается, подчиняется закону прямой линии гипотеза Навье), но не закону плоскости (гипотеза Бернулли). Касательные напряжения при изгибе распределяются по закону параболы, но только в тех сечениях, которые имеют незначительную толщину при большой высоте (узкие прямоугольники). В других сечениях закон распределения касательных напряжений совершенно иной. Для балок переменного сечения, к к-рым в элементарной теории прилагают закон прямой линии и параболы, теория -упругости дает другие решения в этих решениях значения напряжений и деформаций гораздо выше, чем по элементарной теории следует. Общепринятый способ расчета пластин по Баху как обыкновенных балок не оправдывается теорией упругости. Ф-лы С. м. для кручения некруглых стержней не соответствуют таковым в теории упругости. Теория изгиба кривых стержней решительно не совпадает с элементарной теорией Баха-Баумана, но результаты расчета по строгой теории и на основании гипотезы плоских сечений достаточно близки. Поставлена и разрешена для ряда случаев задача о распределении местных напряжений (в местах приложения нагрузки или изменения сечения), к-рая совершенно недоступна теории С. м. Вопрос об устойчивости деформированного состояния, элементарную форму которого представляет в С.м. продольный изгиб, получил в теории упругости общее решение Бриана (Bryan), Тимошенко и Динника. Помимо многочисленных форм устойчивости стержня, сжатого сосредоточенной силой, изучены также явления устойчивости стержней переменного сечения под действием равномерно распределенных сил и другие явления устойчивости балок при изгибе, равномерно сжатой трубы, кольца, оболочек, длинного стержня при скручивании и пр. Теория упругого удара— долевого, поперечного—занимает большое место в теории упругости и включает все большее и большее чис-чо технически важных случаев. Теория колебаний получила настолько прочное положение в теории упругости и в практи-тсе, что методы расчета на ко.чебания проникают область С. м., конечно в элементарном виде. Изучены распространение волны в неограниченной упругой среде (решение Пуассона и Кирхгофа), движение волны по поверхности изотропной среды (решение Релея), волны в всесторонне ограниченных упругих системах с одной, конечно многими и бесконечно многими степенями свободы. В связи с этим находятся решения, относящиеся к колебаниям струн, мембран и оболочек, различной формы стержней, пружин и пластин.  [c.208]


Вопрос о продольных колебаниях, появляющихся при ударе в призматических брусках, был разрешен еш,е Луи Мари Навье ). Колебания брусков при поперечном ударе подробно были рассмотрены Барре Сен-Венаном ). Оба эти исследователя исходили из предположения, что в момент соприкасания ударяюш,ее тело сообщает свою скорость лишь тому сечению бруска, где происходит удар, и так как действие удара в первый момент распространяется лишь на небольшую массу, то заметного изменения скорости не происходит, она начинает убывать лишь по мере распространения действия удара. Допустив, кроме того, что ударяющий груз находится в соприкасании с балкой по крайней мере в продолжение половины периода основных колебаний ), Сен-Венан привел задачу о действии удара на балку к вопросу о поперечных колебаниях призматического стержня с прикрепленным к нему грузом. Решение для этого случая получается в виде бесконечных рядов, но если ограничиться лишь первыми членами этих рядов, то мы придем к ранее полученному элементарным путем второму приближению (2). Многочисленные опыты, произведенные над продольным ударом призматических стержней, не подтвердили результатов Сен-Венана, и более подробное исследование деформации у места удара ) показало, что местные деформации имеют весьма существенное влияние на продолжительность удара.  [c.222]

Решение задачи следует теперь продолжать, предполагая, что число деформирующихся стерженьков стало на единицу меньше, и следить за изменением напряжения в ближайшем деформирующемся стерженьке слева от ожествившихся . Например, если четвертый стерженек так и не начал деформироваться, то после ожествления третьего стерженька следует вновь вернуться к совокупности уравнений (2.25.17), принимая за начальные значения скоростей и г 2 те их величины, которые соответствуют мгновению осуществления равенства [а ] = = Ое. Далее надлежит следить за изменением напряжения во втором стерженьке, пока, наконец, не прекратится деформация и в самом первом стерженьке. Таким образом, можно шаг за шагом построить всю приближенную картину удара стержня о неподвижную преграду.  [c.523]


Смотреть страницы где упоминается термин Стержни — Деформации — Изменения в точке удара : [c.213]   
Справочник машиностроителя Том 3 Изд.2 (1956) -- [ c.396 , c.397 ]

Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.3 , c.396 , c.397 ]



ПОИСК



Деформация в точке

Деформация при ударе

Стержни Деформации

Стержни — Деформации — Изменения



© 2025 Mash-xxl.info Реклама на сайте