Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термодинамические процессы с водяным паром

Ниже рассматриваются некоторые особенности основных термодинамических процессов с водяным паром. Для графического изображения на диаграммах выбраны начальные состояния в области влажного насыщенного пара (1) и конечное состояние в области перегретого пара (2).  [c.68]

Анализ основных термодинамических процессов с водяным паром. В задачу анализа термодинамических процессов с водяным паром входят те же вопросы, что и с идеальным газом.  [c.69]


Расчеты термодинамических процессов с водяным паром производятся с помощью термодинамических таблиц и диаграмм состояний водяного пара. Особое значение для расчетов процессов  [c.68]

Как определяется теплота термодинамического процесса с водяным паром с помощью [ -диаграммы  [c.51]

ТЕРМОДИНАМИЧЕСКИЕ ПРОЦЕССЫ С ВОДЯНЫМ ПАРОМ  [c.75]

Расчеты процессов для водяного пара осуществляются с помощью h—s-диаграммы (см. 12) и таблиц термодинамических свойств (см сноску на с. 121).  [c.143]

В книге уделено внимание разработке и аналитических методов расчета. Прилагаемые диаграммы для расчета наиболее сложных процессов, протекающих с фазовым переходом, построены для смеси воздуха с водяным паром. Для других газов, увлажненных водяным паром, а также для газов, увлажненных паром иной жидкости, могут быть построены аналогичные диаграммы, основывающиеся на тех же термодинамических принципах, но учитывающие иные термодинамические свойства компонентов. Но пока такие диаграммы еще не построены, аналитические методы расчета сохраняют свое значение.  [c.7]

Таблицы. термодинамических свойств воды и водяного пара позволяют производить все необходимые расчеты, связанные с применением водяного пара "как рабочего вещества. С помощью этих таблиц можно проанализировать все основные термодинамические процессы, определить.состояние пара по известным параметрам и пр.  [c.20]

В 2.4 была отмечена важность Гх-диаграммы для исследования термодинамических процессов изменения состояния газов. Не меньшее значение имеет эта диаграмма и для изучения процессов и проведения расчетов, связанных с водяным паром. Ценность этой диаграммы, как известно, обусловлена тем, что в ней площадь под кривой обратимого процесса соответствует количеству теплоты, подводимой к рабочему телу или отводимой от него.  [c.83]

Основные термодинамические процессы водяного пара. Для анализа работы паросиловых установок существенное значение имеют изохорный, изобарный, изотермический и адиабатный процессы. Расчет этих процессов можно выполнить либо с помощью таблицы воды и водяного пара, либо с помощью Л, s-диаграммы. Первый способ более точен, но второй более прост и нагляден.  [c.38]

Решение задач, связанных с термодинамическими процессами в области насыш,енных и перегретых паров, можно производить или с помощью таблиц воды и водяного пара, или с помощью -диаграммы. В этих задачах обычно определяются начальные и конечные параметры пара, изменения внутренней энергии, энтальпии и энтропии, степень сухости, работа и количество теплоты, участвующей в процессе.  [c.190]


Содержание работы. Ознакомление студентов с термодинамическими свойствами рабочих тел на примере воды и водяного пара. Изучение зависимости между давлением и температурой в двухфазной и однофазной областях в процессе нагревания при постоянном объеме и удельном объеме, меньшем и большем критического.  [c.77]

Уравнение состояния реального газа, отражающее все его свойства, как это будет показано ниже (см. 4.9, 4.10) весьма сложно, и непосредственное использование его при исследовании термодинамических процессов связано с большими трудностями. Процесс вычислений значительно облегчают ЭВМ, с помощью которых по сложным уравнениям вычисляют наиболее употребимые параметры состояния с относительно небольшими интервалами их значений. По результатам расчета составляют таблицы термодинамических свойств и строят термодинамические диаграммы, такие, как Гх-диаг-рамма и ей подобные. Таблицы и диаграммы широко используют в анализах и технических расчетах, например, процессов изменения состояния водяного пара (см. 11.6 и гл. XII) и других веществ.  [c.40]

Для исследования природы коррозионных процессов в перегретом паре проводился следующий эксперимент. В стеклянную ампулу впаивались два электрода и штуцер, к которому присоединяли манометр. Затем в ампулу заливалось расчетное количество воды, необходимое для получения при заданной температуре (200°С) перегретого пара определенного давления. Ампула герметизировалась и помещалась в электрическую печь. Величина температуры (200° С) и давления (4 ат), согласно термодинамическим таблицам воды и водяного пара, подтвердили то, что в ампуле находился перегретый пар. При подключении к образцам сухих анодных батарей, между ними возникал электрический ток порядка десяти микроампер.  [c.30]

Ранние исследовательские работы, проводившиеся в связи с применением подогрева питательной воды отработанным паром, не могли опираться на точные сведения о свойствах водяного пара, а также на сколь-нибудь широкий практический опыт применения регенеративных процессов. Скудные сведения о свойствах водяного пара объяснялись низкими параметрами пара (3—5 ата), применяемыми в то время. Отсутствие данных о термодинамических свойствах водяного пара не позволяло исчерпывающе анализировать регенеративный цикл. И. А. Вышнеградский, Цейнер, Ренкин и другие исследователи регенеративных циклов, упрощая задачу и рассматривая идеализированные схемы регенерации, пришли к правильным выводам для этих упрощенных схем. Ими была доказана возможность сохранения основных преимуществ цикла Ренкина — сжатие не в компрессоре, как это необходимо в цикле С. Карно для насыщенного пара, а в насосе. При этом путем введения регенеративного подогрева питательной воды оказалось возможным для идеальных циклов получить такую же величину к. п. д., как и для цикла С. Карно. Этот этап работы, продолжавшийся и в первой четверти XX в., характерен изучением регенеративного цикла с его качественной стороны, путем  [c.44]

Из приведенных расчетов можно сделать выводы увеличение начальных параметров для регенеративных конденсационных циклов до р = 500 -ч- 600 кг/см , t = 700° С, = 300 ч- 350° С приближает регенеративный конденсационный цикл по термодинамическому совершенству к бинарным ртутно-водяным циклам. Величина сравнительной экономии 4% при регенеративном процессе в верхнем и нижнем циклах является величиной, достаточной лишь только для того, чтобы признать для паротурбинных станций большой мощности теоретическое преимущество бинарного цикла перед конденсационным регенеративным циклом водяного пара.  [c.92]

Процесс производства электрической энергии с использованием тепла отработавшего пара турбины для подогрева конденсата, служащего для питания котлов, называется регенеративным процессом, а соответствующий термодинамический цикл водяного пара—регенеративным цик лом.  [c.57]

Термодинамические свойства водяного пара. Водяной пар является основным рабочим телом современной теплоэнергетики. Он используется также и во многих технологических процессах. Поэтому большое значение имеют исследования термодинамических свойств воды и водяного пара. Данные по свойствам воды и водяного пара, предназначенные для практического использования в различного рода расчетах, обычно суммируются в виде подробных таблиц термодинамических свойств. Эти таблицы рассчитываются, как правило, по уравнениям состояния, коэффициенты которых определены на основе экспериментальных данных. При этом в некоторых областях, наиболее трудных для описания с помощью уравнения состояния (в первую очередь это околокритическая область, а также область вблизи линии насыщения), расчет таблиц часто производится непосредственно  [c.191]


Во многих теплотехнических расчетах энергетического и другого оборудования, в особенности при расчете динамических характеристик теплообменников, парогенераторов, атомных реакторов, турбоустановок и энергетических блоков в целом, наряду с данными о термодинамических свойствах воды и водяного пара необходимо располагать достаточно надежными данными о важнейших термодинамических производных, характеризующих скорость изменения термодинамических величин в различных процессах в зависимости от параметров рабочего тела.  [c.3]

Низкий термодинамический КПД агрегата обусловлен потерями, возникающими в процессе передачи теплоты от топлива, обладающего химической энергией высокого потенциала, к технологическому продукту и особенно к водяному пару с энергией низкого потенциала. В рассматриваемом случае потери от неравновесного теплообмена составляют 22, а потери от необратимого горения 23,8 %. Вместе с тем потери эксергии с уходящими газами в ЭТА по эксергетическому балансу составляют 1,3 против 7,1 % по тепловому балансу, что объясняется низким температурным потенциалом уходящих газов, а следовательно, и относительно малой их ценностью.  [c.102]

Облака над вершинами гор с правой стороны рис. В-1 напоминают о том, что при охлаждении влажного воздуха (в данном случае за счет адиабатического расширения) водяной пар способен к изменению фазы. В этих условиях происходит его конденсация на мельчайших частичках пыли или других ядрах, неизбежно присутствующих в атмосфере, и образуются капельки или кристаллы. Процесс конденсации протекает настолько быстро по сравнению с движением воздуха, что скорость ветра не представляет большого интереса для метеорологов. Однако в других условиях знание скорости перемещения среды приобретает важное значение для расчета роста капель. К примеру, при проектировании турбины, работающей на парах металла, необходимо знать размеры капель, образующихся в ступени низкого давления. Такие сведения требуются как для расчета термодинамических характеристик, так и для оценки опасности эрозии турбинных лопаток. Поскольку конденсация есть процесс переноса массы, ее скорость входит в круг объектов нашего исследования.  [c.16]

В раздел включены таблицы термодинамических свойств основных рабочих веществ воды и водяного пара, воздуха, углекислого газа, азота, аммиака и др. При этом сведения о свойствах воды и водяного пара даны в соответствии с Международной системой уравнений 1997 г для промышленного использования, применяющейся с 1 января 1999 г во всех развитых странах. Данные для других веществ соответствуют действующим стандартам. В этот раздел также включены сведения по термодинамическим процессам, циклам паротурбинных и газотурбинных энергетических установок, дан их анализ. Для сложных термодинамических систем, совершающих помимо работы расширения и другие виды работ, даны соотношения, необходимые для их расчета и анализа.  [c.8]

Расчеты термодинамических процессов с водяным паром производятся с помощью термодинамических таблиц и диаграмм состояний водяного пара. Особое значение для расчета процессов с водяным паром имеет is-диаграмма, каждая точка на которой соответствует определенным значениям параметров состояния р, v, Т, i, S (приложение 21). На w-диаграмме нанесены изобары, изотермы и изохоры. Адиабатный обратимый процесс изображается отрезком вертикальной прямой (s= onst).  [c.63]

Диаграмма Ts для водяного пара. При изучении газов мы отмечали важность диаграммы Ts для исследования термодинамических процессов. Еще большее значение для исследования процессов и расчетов, связанных с водяным паром, приобретает в паротехнике диаграмма Ts и особенно диаграмма is, так как при пользовании ими значительно облегчается решение ряда задач. Диаграмма Ts для водяного пара строится на основании уравнений (156), (157) и (159). По оси абсцисс, как всегда, откладывается энтропия, а по оси ординат — абсолютные температуры.  [c.133]

Как определяется изменение внрренней энергии водяного пара в термодинамическом процессе с помощью гх-диаграммы  [c.51]

В приближенных термодинамических расчетах процессов с влажным воздухом в небольшом диапазоне температур можно применять удельную изобарную теплоемкость сухого воздуха Срв= 1 кДж/(кг-К) = onst, удельную изобарную теплоемкость водяного пара Срв 2 кДж/(кг К) = onsl. В этом случае, выражая теплоемкость в кДж/(кг-К), получаем  [c.42]

Химическая термодинамика занимается изучением химических процессов с термодинамической точки зрения и в отличие от технической рассматривает явления, в которых происходят знутрп-молекулярные изменения рабочего тела при сохранении гтомами молекул своей индивидуальности. Образование новых веществ (рабочего тела) или разложение веществ осуществляется в результате химической реакции. Для химического процесса характерно изменение числа и расположения атомов в молекуле реагирующих веществ. В ходе реакции разрушаются старые и возникают новые связи между атомами. В результате действия сил связей шэоисхо-дит выделение или поглощение энергии. Энергия, которая может проявляться только в результате химической реакции, называется химической энергией. Химическая энергия представляет собой часть внутренней энергии системы, рассматриваемой в момент химического превращения, ибо в запас внутренней энергии входит не только кинетическая и потенциальная энергия молекул, но и ншергия электронов, энергия, содержащаяся в атомных ядрах, лучистая энергия. Отличительным признаком химической реакции является изменение состава системы в результате перераспределения массы между реагирующими веществами в изолированной системе. Если же система не изолирована от окружающей среды, то свойства ее должны зависеть также от количества вещества, введенного в систему или выведенного из нее. Если, например, в калориметрическую бомбу поместить смесь из двух объемов водорода и одного объема кислорода (гремучий газ), то, несмотря на отсутствие теплообмена, происходит реакция с образованием водяного пара  [c.191]


Изменение внутренней энергии в ходе химической реакции может проявляться только в виде теплоты или в виде работы. Так, результатом реакции гремучего газа после выравнивания температур будет отдача теплоты окружающей среде. Это термодинамический процесс. Если же эту реакцию осуществить в цилиндре двигателя, то водяной пар соверщит, воздействуя на порщень, определенную работу. Взяв состояние смеси до сгорания за начальное и состояние водяного пара после расширения в цилиндре за конечное, будем иметь дело с чисто термодинамическим процессом взаимодействия с окружающей средой. Таким образом, химическая реакция может рассматриваться как термодинамический процесс. Из химических процессов для авиационных специалистов наибольший интерес представляют реакции горения (процесс окисления топлив), ибо выделившаяся в процессе горения теплота в двигателях может быть преобразована в механическую работу.  [c.192]

В природе, строго говоря, не существует сухих газов. Такие широко применяемые в технике газы, как атмосферный воздух или продукты сгорания топлива, всегда содержат водяной пар. Но даже небольшое содержание пара при определенных условиях может оказать существенное влияние на термодинамические свойства газа. Если же массовая доля пара оказывается более или менее значительной или изменение состояния смеси происходит в такой области параметров, когда пар претерпевает фазовый переход, то парогазовую смесь следует рассматривать как особое рабочее тело с необычными для пара или газа термодинамическими свойствами. Между тем такие процессы измене1гия состояния встречаются в технике все более часто. Примерами могут служить процессы в системе кондиционирования воздуха, процессы адиабатного сжатия или расширения с фазовым переходом одного из компонентов.  [c.181]

В период 1901 —1908 гг. В. И. Гриневецкий опубликовал ряд работ, в которых изложил термодинамический расчет паровых котлов, анализ рабочего процесса паровых машин (с применением энтропийной диаграммы), исследования общих уравнений термодинамики применительно к водяному пару. В 1908 г. им был опубликован капитальный труд Теп.лово1 расчет рабочего процесса . Профессор А. С. Ястржембский так характеризует этот труд Этой глубокой работой, построенной на общих положениях термодинамики. Гриневецкий заложил начало научно обоснованной теории двигателей внутреннего сгорания и теплового расчета их рабочего процесса. Эта работа Гриневецкого оказала огромное взшянне на развитие отечественного двига-телестроеиия .  [c.7]

Химическую активность водяного пара подтверждают газификация и пиролиз жидких топлив, а также процесс конверсии метана и других углеводородных газов. Термодинамические расчеты и экспериментальные исследования, выполненные В. С. Альтшулером и Г. В. Клириковым [16, 17], показали, что при газификации мазутов на паровоздушном дутье, содержащем 15—20% Н2О, выход газа и содержание водорода в нем выше, а выход сажи в 1,5 раза ниже, чем при воздушном дутье (рис. 54).  [c.118]

В работе В. С. Альтшулера и Г. В. Клирикова [44] термодинамический анализ-процесса газификации выполнен для систем мазут — водяной пар, мазут — водяной пар — кислород, мазут — кислород при температуре 1000—2000° К, коэффициенте расхода кислорода oiq = 0,18 - - 0,83, составе дутья по отношению пар мазут от 0,5 до 2 и давлений 1—150 ama.  [c.191]

Термодинамические расчеты процесса газификации водо-нефтяных эмульсий позволяют на основе материального баланса сделать оценку степени реагирования водяного пара с нефтью в зависимости от принятых основных параметров.  [c.201]

Так, если в турбину поступает пар с давлением Pi= 16 670 кПа (170 кгс/см ) и температурой Г1=550° С, а давление пара в конденсаторе поддерживается равным Pj=4 кПа <0,04 кгс/см ), то расчет значения цикла Репкина ведется следующим образом. Из таблиц термодинамических свойств воды и водяного пара находим , что энтальпия нара при давлении 16 670 кПа (170 кгс/см ) и температуре 550° С составляет ii=3438 кДж/кр <821,2 ккал/кг), энтропия пара при этом составляет 1=64 619 кДж/(кг-К) i l,5434 ккал/(кг-К)]. С помощью г, -диаграммы (или же расчетным путем) находим значение энтальпии влажного пара га при давлении Ра=4 кПа (0,04 кгс/см ) и том же, что и в точке 1, значении энтропии (в обратимом процессе адиабата расширения совпадав с изоэнтроной). Эта величина равна i2=1945 кДж/кг (464,5 ккал/кг).  [c.364]

Пакет прикладных программ для- автоматизации процесса построения термодинамических уравнений состояния [33]. Пакет построен по принципу интерпретатора, что позволяет организовать хорошую диагностику, легко расширять входной язык пакета и его функции. Модульная организация пакета обеспечивает его легкую модернизацию. Пакет состоит из управляющего блока-мопитора, семи обрабатывающих блоков, базового набора модулей для расчета термодинамических параметров воды и водяного пара и базы данных пакета — архива уравнений. Исходные данные включают область изменения параметров, для которой необходимо построить уравнение список параметров, являющихся аргументами список параметров, для которых необходимо построить уравнения. В соответствии с запросом осуществляется выбор метода построения уравнений, выбор формы уравнений, определения коэффициентов аппроксимации, аналитическое преобразование уравнений согласно дифференциальным соотношениям термодинамики и проведение оценки точности уравнений. Пакет реализован на языке Фортран-lV для ЭВМ М-4030 ДОС АСВТ (версия 1.2). Он мон ет применяться на ЕС ЭВМ на моделях не ннлсе ЕС-1033. Для работы пакет требует около 160 Кбайт оперативной памяти.  [c.179]

Эн етический процесс современной паротурбиной электростанции основан на термодинамическом цикле Ренкина с подводом и отводом теплоты рабочему телу (воде и водяному пару) при постоянном давлении Термический КПД этого цикла для 1 кг рабочего тела  [c.15]

Наиболее распространенным является процесс взаимодействия металлов с кислородом, хотя известны и другие виды газовой коррозии (сернистая, водбродная и др.). Химическая коррозия, имеющая место в этом случае, развивается в кислородсодержащих газах иа воздухе, в углекислом газе, водяном паре, чистом кислороде и др. Движущей силой газовой коррозии является термодинамическая неустойчивость металлов в газовых средах при данных внешних условиях давлении, температуре, составе среды и др. При этом на поверхности металла чаще всего образуется оксидная пленка. От структуры, состава и свойств этих пленок зависит скорость процесса газовой коррозии. Защитные свойства оксидных пленок в значительной степени определяются их сплошностью, которая зависит от отношения моля оксида к массе атома металла. Хорошо защищают металл от дальнейшего окисления только плотные оксиды, если отношение объемов находится S пределах 1,0—2,5 [28].  [c.407]



Смотреть страницы где упоминается термин Термодинамические процессы с водяным паром : [c.67]    [c.2]    [c.121]    [c.90]    [c.45]    [c.119]    [c.309]    [c.22]    [c.378]    [c.142]    [c.181]    [c.124]   
Смотреть главы в:

Теплотехника  -> Термодинамические процессы с водяным паром



ПОИСК



Вес водяных паров

Водяной пар

Водяные пары

Общий метод исследования термодинамических процессов водяного пара

Основные термодинамические процессы водяного пара

Основные термодинамические процессы изменения состояния водяного пара на ро-диаграмме

Процессы термодинамические

Термодинамические параметры состояния водяного пара. Паровые процессы

Термодинамические процессы водяного пара

Термодинамические процессы водяного пара

Термодинамические процессы изменения состояния водяного пара

Термодинамический анализ процессов производства водяного пара



© 2025 Mash-xxl.info Реклама на сайте