Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Определение ванадия

Определение ванадия в двух степенях его окисления  [c.102]

Стали легированные и высоколегированные. Методы определения ванадия.  [c.770]

Для электротехнических целей используются специальные марки алюминия А5Е и А7Е, в которых содержание железа и кремния находится в определенном соотношении, а содержание титана, ванадия, хрома и марганца снижено до тысячных долей процента.  [c.121]

Точность определения проверена по синтетической смеси химически чистых оксидов ванадия с содержанием У 20 = 76,50 %. Результаты последовательно выполненных анализов достаточно хорошо соответствуют фактической концентрации 2 5 >24 76,24 76,31 76,38 %.  [c.103]


Для точного определения карбидов ванадия рекомендовано много способов химического анализа. Карбид V можно рассматривать как насыщенное соединение. Он склонен к образованию дефектной решетки. Содержание углерода при одном и том же типе кристаллической решетки может изменяться от 11 до 19% вблизи стехио-метрического состава. Поэтому при химическом анализе карбидов в ванадиевых сталях находят всегда карбид который  [c.137]

Кривые вязкой составляющей в изломе для ванадия указанной чистоты, результаты ударных и статических испытаний представлены на рис. 25 и 26. Ванадий с содержанием примесей 1000 и 1800 анм при температуре" —196°С еще не переходит в хрупкое состояние при уменьшении чистоты ванадия четко обнаруживается постепенное повышение порога хладноломкости. Порог хладноломкости ванадия в зависимости от содержания кислорода и азота, определенный по представленным на рис. 25 и 26 данным, приведен ниже  [c.31]

Другой причиной, препятствующей определению р и а двойных сплавов на основе железа, является высокая химическая активность ряда элементов. Нет пока материалов, которые могли бы контактировать, не взаимодействуя, с жидким титаном, цирконием, ванадием и рядом лантанидов. Изучение р и сг двойных систем на основе железа во всем концентрационном интервале также ограничено высокой температурой плавления одного из компонентов (бор, гафний, ниобий, тантал, молибден, вольфрам, рений, рутений, родий, осмий, иридий).  [c.39]

Установлено, что введенные в определенных количествах по отношению к углероду легирующие элементы (хром, ванадий, титан и др.), обеспечивающие образование устойчивых кар бидов, устраняют вредное влияние водорода.  [c.85]

Ванадий повышает жаропрочность 12%-ных хромистых сталей, но в определенном сочетании с другими легирующими элементами (Мо, Сг и С). В 12%-ной хромистой стали с 0,6% Мо и 0,1% С наибольший эффект упрочнения при 550° С достигается при введении около 0,3% V. Эффективность влияния ванадия связана с образованием дисперсных выделений карбидов ванадия типа V , При отпуске образуются два вида карбидов типа (Сг, V, Fe, Мо),зСе и небольшое количество карбида ванадия типа V .  [c.131]

В сталях всех марок присутствуют постоянные примеси. Некоторые примеси (марганец, кремний) необходимы в металле по условиям технологии выплавки стали, другие (вредные) примеси (сера, фосфор) не поддаются полному удалению. Постоянный характер носят также так называемые скрытые примеси (кислород, водород, азот), содержание которых мало. К специальным примесям относят легирующие добавки для придания стали определенных свойств (никель, молибден, ванадий, титан и др.), а также углерод, марганец, кремний. В марках легированных металлов и сплавов указывается наличие тех или иных элементов буквами русского алфавита (табл. 2, стр. 5—6).  [c.11]


Радиационное распухание не является характерной особенностью металлов с определенным типом кристаллической решетки. Поры, вызванные облучением, наблюдаются в ГЦК-(алюминий [67, 104], медь [67, 104], никель [67, 104], платина [105]), ОЦК-(ванадий [67, 106], молибден [3, 62, 67], вольфрам [67, 104 ], ниобий [67, 77, 104], тантал [104, 107], железо [63, 108 ) и ГПУ-(магний [67, 104], рений [63], цирконий [109]) металлах.  [c.143]

Спектральный анализ дает возможность определить все основные элементы легированной стали хром, молибден, вольфрам, марганец, кремний, ванадий, титан, ниобий, никель. Углерод, серу и фосфор методом спектрального анализа определить не удается. Точность анализа достаточна для определения марки стали.  [c.65]

Для определения фазового состава азотированного слоя были проведены фазовый химический и рентгеноструктурный анализы. Выявлено, что кремний легирует карбонитрид-ную фазу, не образуя самостоятельных нитридов. Дополнительным разделением карбонитридных фаз на основе железа, хрома и ванадия удалось установить, что кремний входит в нитриды на основе железа. Одновременно был выявлен немонотонный характер изменения азота в карбонитридной фазе по глубине слоя — резкое уменьшение его концентрации на глубине 0,03—0,05 мм (табл. 52).  [c.182]

Элементы второй группы повышают устойчивость феррита. Ко второй группе относятся хром, кремний, молибден, ванадий, вольфрам, титан, ниобий и алюминий. При содержании элементов второй группы выше определенного количества сталь в интервале температур от комнатной до перехода в жидкое состояние имеет структуру легированного феррита. Такая сталь называется ферритной.  [c.49]

Из перлитных сталей, используемых для поверхностей нагрева и паропроводов, больше всего подвержены хрупкому разрушению хромомолибденованадиевые стали, причем тем в большей степени, чем выше содержание в них ванадия и молибдена. Определенную роль играют, по-видимому, особенности ведения процесса их выплавки и скрытые примеси.  [c.89]

При стилоскопировании между электродом из меди, угля или чистого железа и деталью возбуждается электрический разряд. Световые лучи от разряда направляют в систему линз и призм, в которых они разлагаются по длинам волн в линейчатый спектр. Раскаленные пары каждого металла имеют свои вполне определенные линии в спектре, свойственные только одному этому металлу. Спектр сплава складывается из спектров металлов-компонентов, Если, например, в состав стали входит хром, то в спектре паров стали обязательно имеются линии хрома. Чем выше содержание хрома в стали, тем ярче его линии. По наличию характерных ярких линий в спектре паров стали можно быстро определить наличие легирующих элементов. Наличие хрома, молибдена, ванадия и других элементов определяется на глаз. Качественное определение легирующих примесей при помощи портативного переносного стило-скопа в заводских или монтажных условиях занимает доли минуты.  [c.233]

Таким образом, разработанная схема определения ванадия различных степеней окисления сводится к следующему определению суммарного содержания ванадия в виде пентаксида по прописи, установлению истинного содержания ванадия в степени окисления 5 по изложенному методу, определению низших оксидов ванадия в степенях окисления 5 и 4 по разности.  [c.103]

Определение ванадия [13, 21, 22]. Ванадий может присутствовать в стали (чугуне) в виде весьма устойчивых простых карбидов V4 3, V2 , сложных карбидов с цементитом и в состоянии твёрдого раствора в феррите. Его вводят в качестве самостоятельного компонента для придания стали специальных свойств, а также в качестве раскислителя. СодержаниеУ в стали обычно ограничивается 0,2—0,3%, только в некоторых марках быстрорежущей стали и её заменителях содержание V доходит до 0,5 и до 2,5%.  [c.102]

Эта реакция применяется для аналитического определения ванадия. При этом в качестве восстановителя чаще всего берется двойной сульфат желе-3a(Hj и аммония (соль Мора) избыток восстановителя разрушается затем персульфатом аммония, а ванадилсульфат оттитровывается перманганатом калия  [c.115]

ГОСТ 10364-90. Нефть и нефтепродукты. Метод определения ванадия. М. Изд-во стандар>тов, 1991.  [c.605]

Титан, ниобий, вольфрам и ванадий — карбидообразователи. Поэтому в стали могут образовываться не только карбиды хрома, но и карбиды этих элементов (Ti , Nb , V ). При определенных содержаниях [Ti С — 0,02) 5 и Nb 10С1 весь свободный, выше предела его растворимости (0,02%), углерод может выделиться не в виде карбидов хрома, а в виде карбидов титана или ниобия. Выпадение карбидов повышает прочностные и понижает пластические свойства сталей.  [c.285]


Подтверждением модели деформационного урочнения, как указывает Конрад [63], является достаточно хорошее соответствие величин а, получаемых из зависимости о = / (р )> теоретическим значениям, вычисленным по этой модели. Кроме того, коэффициенты К,у, вычисленные по имеющимся в литературе данным измерения плотности дислокаций (в меди, серебре, железе, ванадии и вольфраме), достаточно хорошо совпадают с экспериментальными значениями коэ( х[зициента /Су, определенными по кривым Холла — Петча [63].  [c.118]

Роль элементов, входящих в диборидную фазу, уже обсуждалась в разд. Б. Как отмечалось, влияние состава сплавов Ti—V на константу скорости реакции, показанное на рис. 16, может быть связано с изменением стехиометрического состава диборида при легировании. Согласно оценкам, нестехиометрический диборид титана с избытком бора переходит в стехиометрический при содержании, 20 ат.% ванадия, что приблизительно совпадает с минимумом на рис. 16. Исходя из этого, Кляйн и др. [20] и Шмитц и др. [40] разработали сплавы, в которых скорость роста диборида регулируется обоими механизмами. Один из таких сплавов включен в табл. 6 константа скорости взаимодействия бора с этим сплавом равна 0,2-10 см/с , что составляет 4% константы скорости реакции с нелегиро ванным титаном. Это означает, что время, необходимое для образования определенного количества продукта реакции в случае реакции бора с разработанным сплавом, в 625 раз больше, чем с нелегированным титаном.  [c.135]

Технология производства опытных сплавов была следующая шихту, представляющую собой смесь в определенной пропорции компонентов сплава в виде стружки, прессовали в цилиндры диаметром 30 мм, которые использовали в качестве электродов. Плавку вели в вакууме в дуговой печи с расходуемым электродом. Полученный в кристаллизаторе слиток диаметром 50 мм перетачивали на диаметр 45 мм и вторично переплавляли в кристаллизаторе диаметром 60 мм. Масса слитков, полученных после второго переплава, 1,2—1,6 кг. Эти слитки подвергали пластической деформации при 1280—1000 С. Склонность ванадия и соответственно высокованадиевых сплавов к окислению (выше 675° С образуется жидкая токсичная окись ванадия, которая стекает с поверхности и не защищает металл от окисления) вызьшает необходимость проведения деформации в герметична контейнерах из нержавеющей ст и. После ковки всю поверхность полученной сутунки обрабатьгаали для удаления поверхност-10  [c.10]

Адгезия к окислам металлов и металлических пленок, осажденных на окисную подложку, во многом определяется образованием химических соединений [3], в частности окислов [5, 10, 12L При исследовании тонких пленок молибдена и ванадия, напыленных на подложки SiOj и AlaOg, необходимо обратить внимание на возможность обнаружения на межфазной границе пленка — подложка окислов молибдена и ванадия соответственно. Однако в то время как металл обладает максимально возможным коэффициентом поглощения К Ю —10 смг ) в очень широкой области спектра от жесткого ультрафиолета и до радиоволн включительно, окислы в широких спектральных участках обладают значительно меньшим коэффициентом поглощения [14]. Поэтому сравнительно небольшие по интенсивности полосы поглощения окислов практически невозможно обнаружить на фоне мощного поглощения чистого металла. Лишь в определенных участках спектра, в которых начинаются собственные поглощения, обусловленные междузонными переходами, величина поглощения окисла может в какой-то мере приближаться к коэффициенту поглощения металла. Для обнаружения окислов молибдена и ванадия по оптическому пропусканию тонких пленок, напыленных на окисные подложки, необходимо было выбрать такой спектральный интервал, в котором происходит резкое изменение величины коэффициента поглощения окисла молибдена или ванадия) от сравнительно небольших значений до значений, близких к их металлическому поглощению. Только в этом случае можно обнаружить характерные спектральные изменения пропускания, которые будут указывать на наличие того или иного окисла. Так как при высоких температурах, начиная с 800° С и выше, стабильны только  [c.19]

Высокотемпературную коррозию можно предотвратить путем добавления к сплаву элементов, имеющих тенденцию селективно окисляться с образованием защитного покрытия. Например, так называемая жаростойкая сталь содержит более 12 % хрома. Благодаря этому при повышенных температурах образуется тонкий, невидимый слой FeO ijOg и rjOg. Он предохраняет сталь от дальнейшего окисления даже при 1000 °С, если содержание хрома достаточно велико. Поэтому такую сталь используют в высокотемпературном оборудовании, например в газовых турбинах. Однако при определенных условиях защитные свойства оксида могут теряться. Это может произойти, если поверхность подвергнется действию топочных газов, загрязненных, например оксидом ванадия, понижающим точку плавления защитного покрытия. Тогда окисление может протекать с высокой скоростью, и его обычно называют катастрофическим окислением.  [c.64]

Титан существует в двух аллотропических модификациях —а-титан, имею щий гексагональную, плотно упакованную решетку с периодами а = 2,9503 0,0004А и с = 4,8631 0,000А, с а 1,5873 0,0004 устойчив при темпе ратурах ниже точки полиморфного превращения 882 С, и Р-титан с кубической объемно-центрированной решеткой, период которой, определенный условно для 20° С методом экстраполяции, равен 3,283 0,003А, а при 900 — 5 — 3,3132.Л устойчив при температурах выше 882 С. Однако можно получить Р-решетку, устойчивую и при более низких температурах путем легирования титана другими металлами, так называемыми Р-стабилизаторами, наиболее употребительными из которых являются молибден, ванадий, марганец, хром, железо. Можно расширить температурный интервал существования и а-решетки путем легирования титана алюминием, кислородом и азотом, которые повышают температуру полиморфного превращения и называются а-стабилизаторами.  [c.172]

В табл. 32 приведены основные характеристики наиболее широко применяемых композиций материалов для контактных площадок в гибридных интегральных схемах, и в табл. 33 характеристики металлов контактных систем в интегральных схемах. В результате все более широкого применения фотолитографических методов формирования топологического рисунка и определенных трудностей в травлении нихрома во многих случаях адгезивный подслой формируется из хро.ма или ванадия, реже из титана или циркония.  [c.448]


Изучены также механические свойства и структура стали после ВТМО (8 — 35%, у р = 1м/с при 900° С). Физические причины, определяющие увеличение прочности при ВТМО, заключаются в повышении плотности дислокаций в мартенсите й дроблении его кристаллов йа отдельные фрагменты величиной в доли микрона с взаимной разорнентировкой до 10—15°. В стали формируется определенная субструктура полигонизации (рис. 8, г). Дислокационные границы такого типа отчетливо видны на электронных микрофотографиях. Фрагментация кристаллов мартенсита обнаруживается при сопоставлении электронограмм. У сталей, легированных элементами, вызывающими эффект вторичного твердения (ванадием, молибденом, вольфрамом), упрочнение может быть  [c.20]

Реакция на титан. Присутствие титана определяется по образованию жёлтой окраски от прибавления Н2О2. Определение производят так же, как ванадия.  [c.93]

Определение производится в сернокислой или серно-фосфорнокислой среде,после окисления У" до У при помощи (NN4)28208 (при кипячении) или КМПО4. К холодному раствору прибавляют (без избытка) Н2О2 и сравнивают буро-красное окрашивание со стандартным раствором, приготовленным из ванадата аммония и раствора стали (чyгyнaJ, не содержащей ванадия. Метод неприменим в присутствии больших количеств ряда элементов, дающих окрашенные ионы (Сг и N1), а также в присутствии Ш. Окраска Т1 может быть устранена прибавлением НЕ или фтористых солей.  [c.102]

Но определенные осложения при сжигании мазута возникают вследствие образования плотных относительно трудно удаляемых отложений на поверхностях нагрева, высоко- и низкотемпературной коррозии поверхностей нагрева, образования смолистых отложений в ма-зутопроводах и коррозии мазутопроводов. Неблагоприятные свойства золы мазута обусловлены наличием в нем серы, ванадия и натрия.  [c.5]

Для изучения механизма ванадиевой коррозии и для определения основных причин, вызывающих высокую скорость окисления была проведена большая и кропотливая работа А. И. Максимовым Л. 117], в которой он ставил целью экспериментально установить, происходят ли указанные реакции и с какого уровня температур они 1начинаются. В результате проведенных исследований было установлено, что взаимодействие пятиокиси ванадия с железом начинается с 515—525° С, а взаимодействие трехокиси железа с пятиокисью ванадия с образованием ванадата железа —с 550° С. Низшие окислы ванадия (V2O3 и V2O4) в среде воздуха начинают медленно окисляться при температуре 450° С. Процесс окисления значительно ускоряется при температуре 600° С. Таким образом, в условиях ванадиевой коррозии отмеченные выше реакции действительно протекают, но температурный уровень начала активного взаимодействия находится ниже уровня температур резкого повышения скорости окисления, характерного для  [c.323]


Смотреть страницы где упоминается термин Определение ванадия : [c.276]    [c.341]    [c.19]    [c.179]    [c.27]    [c.343]    [c.670]    [c.86]    [c.157]    [c.137]    [c.30]    [c.37]    [c.50]    [c.102]    [c.371]    [c.18]   
Смотреть главы в:

Методы анализа ниобиевых сплавов  -> Определение ванадия



ПОИСК



Ванадий 273, 275, ЗСО

Ванадит



© 2025 Mash-xxl.info Реклама на сайте