Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние концентрации напряжений на прочность деталей машин

Влияние концентрации напряжений на прочность деталей машин, испытывающих деформацию растяжения (сжатия), изгиба или кручения, проявляется примерно одинаково. Опыты показывают, что для пластичных материалов концентрация напряжений при статических нагрузках не представляет опасности, поскольку за счет текучести в зоне концентрации происходит перераспределение (выравнивание) напряжений. Величина эффективного коэффициента концентрации в этом случае близка к единице.  [c.219]


ВЛИЯНИЕ КОНЦЕНТРАЦИИ НАПРЯЖЕНИЙ НА ПРОЧНОСТЬ ДЕТАЛЕЙ МАШИН  [c.618]

Влияние концентрации напряжений на прочность деталей машин 619  [c.619]

Перейдем теперь к рассмотрению влияния концентрации напряжений на усталостную прочность деталей машин.  [c.636]

В подавляющем большинстве случаев появление трещин в деталях и их поломка в условиях эксплуатации машин происходят в местах надрезов, обусловливающих концентрацию напряжений, оказывающих существенное влияние на прочность деталей (рис. 13.3).  [c.250]

Прочность деталей машин, работающих при большом числе перемен нагрузок, в значительной степени зависит от состояния поверхностных слоев. Усталостная трещина возникает на поверхности детали, где действуют наибольшие напряжения при изгибе, кручении. Дефекты поверхности в виде рисок от прохождения режущей кромки при обработке, неравномерности структуры, остаточных напряжений и неравномерности физико-меха-нических свойств подповерхностного слоя способствуют возникновению очагов концентрации напряжений, что приводит при некоторых методах обработки к резкому снижению предела выносливости (рис. 133). На рис. 133 по оси ординат отложены значения коэффициента р, характеризующего влияние метода обработки (качества поверхности) на предел выносливости в зависимости от предела прочности  [c.402]

Во второй части книги были приведены сведения о расчетах на прочность при статическом действии нагрузки и краткие данные об определении напряжений при ударе. Для большинства деталей машин характерно, что возникающие в них напряжения периодически изменяются во времени в связи с этим возникает вопрос о расчете на прочность и установлении величин допускаемых напряжений при указанном характере нагружения. При действии переменных напряжений значительно существеннее, чем при постоянных напряжениях, сказывается влияние формы детали, ее абсолютных размеров, состояния и качества поверхности. Особое значение имеет форма детали и связанное с ней явление концентрации напряжений. Кратко ознакомимся с этим явлением, а затем рассмотрим вопрос о выборе допускаемых напряжений раздельно для статического и переменного во времени нагружения.  [c.328]

Изучению влияния трещин на прочность конструкций предшествовали десятилетия изучения влияния надрезов, которые неизбежно существуют в деталях реальных конструкций и машин, на их прочность. Такими надрезами являются отверстия, шпоночные канавки и т. п. Любое резкое изменение поперечного сечения представляет собой надрез и вызывает концентрацию напряжений. В данной работе термин надрез применяется в более узком смысле для обозначения геометрической конфигурации, которая имеет определенный конечный краевой радиус, в то время как трещина характеризуется тем, что ее краевой радиус сколь угодно мал.  [c.441]


Влияние поверхностного упрочнения на чувствительность к концентрации напряжений в связи со статической прочностью материала.— В кн. Упрочнение деталей машин механическим наклепыванием. М., Наука , 1965, с. 39—46.  [c.307]

Когда напряжения велики, то они оказывают некоторое влияние на статическую прочность материала и значительное влияние на прочность при динамических нагрузках. При конструировании деталей машин следует избегать глубоких выточек, выкружек, резких переходов сечений и т. д., около которых возникает концентрация напряжений, способствующая в известных условиях преждевременному разрушению материала.  [c.50]

Поверхности деталей машин упрочняют различными методами обработки без снятия стружки, и методы основаны на пластическом деформировании поверхностного слоя. В результате применения этих методов твердость поверхностного слоя повышается, в нем возникает наклеп и сжимающие остаточные напряжения 40—70 кгс/мм . При упрочняющей обработке участков концентрации напряжений уменьшается влияние этих напряжений на прочность детали. Влияние наклепа благоприятно для повышения предела выносливости деталей. Используются следующие методы упрочняющей обработки, основанные на поверхностно-пластическом де( юрмировании материала детали.  [c.137]

Благодаря влиянию, оказываемому на предел усталости формой и размерами детали, действительная усталостная прочность деталей машин и соединений (конструктивная прочность — см. гл. I) значительно отличается от номинальной усталостной нрочности, характеризуемой пределом усталости лабораторного образца. Средствами повышения конструктивной прочности нри заданных условиях эксплуатации и выбранном материале являются 1) обш,ее и поверхностное упрочненпе детали технологическими методами и 2) рациональное конструктивное оформление, обеспечивающ,ее равномерное восприятие нагрузки возможно большей частью объема детали, при отсутствии или минимальной концентрации напряжений.  [c.183]

Большинство детале машин испытывает напряжения, возрастающие от нейтральной оси или слоя к поверхности (изгиб, кручение). На поверхности деталей действуют концентраторы, резко увеличивающие напряжения. Известно, что повышение прочности материалов свыше некоторого предела, в частности прочности сталей свыше 120 кгс/мл1-, мало новьшхает предел выносливости деталей из-за роста влияния концентрации напряжений. Большинство деталей маншн выходит из строя вследствие поверхностных разрушений. Поэтому одной из современных тенденций повышения прочности деталей является применение поверхностных уп1)очнений и покрытий.  [c.27]

Учебное пособие написано в рамках чтения лекций в МГТУ им. Н.Э. Баумана по курсу Конструкционная прочность машиностроительных материалов на факультете Машиностроительные технологии (кафедра Материаловедение ) и предназначено для студентов, обучающихся на материаловедов и машиностроителей. Среди механических свойств конструкционных металлических материалов усталостные характеристики занимают очень важное место. Известно, что долговечность и надежность машин во многом определяется их сопротивлением усталости, так как в подавляющем большинстве случаев для деталей машин основным видом нагружения являются динамические, повторные и знакопеременные на1 рузки, а основной вид разрушения - усталостный. В последние годы на стыке материаловедения, физики и механики разрушения сделаны большие успехи в области изучения физической природы и микромеханизмов зарождения усталостных трещин, а также закономерностей их распространения. Сложность оценки циклической прочности конструкционных материалов связана с тем, что на усталостное разрушение оказывают влияние различные факторы (структура, состояние поверхностного слоя, температура и среда испытания, частота нагружения, концентрация напряжений, асимметрия цикла, масштабный фактор и ряд других). Все это сильно затрудняет создание общей теории усталостного разрушения металлических материалов. Однако в общем случае процесс устаттости связан с постепенным накоплением и взаимодействием дефектов кри-сталтгической решетки (вакансий, междоузельных атомов, дислокаций и дискли-наций, двойников, 1 раниц блоков и зерен и т.п.) и, как следствие этого, с развитием усталостных повреждений в виде образования и распространения микро - и макроскопических трещин. Поэтому явлению усталостного разрушения присуща периодичность и стадийность процесса, характеризующаяся вполне определенными структурными и фазовыми изменениями. Такой анализ накопления струк-туршз1х повреждений позволяет отвлечься от перечисленных выше факторов. В учебном пособии кратко на современном уровне рассмотрены основные аспекты и характеристики усталостного разрушения металлических материалов.  [c.4]


Испытание образцов с надрезами при однократном нагружении. Ввиду наличия в различных деталях машин и других изделиях всевозможных канавок, вьггочек, отверстий, нарезок, галтелей, необходимых для конструктивных и эксплуатационных целей, возникла необходимость выяснить чувствительность материала к надрезам, для чего производится сопоставление результатов испытания материала в гладких образцах и образцах с надрезом. Наряду с этим определяют и абсолютные значения характеристик материала при наличии надреза в образце. В большинстве случаев налрез снижает пластичность и вязкость материала и мало влияет на прочность. Испытания производят при различных видах деформации образца (растяжение, сжатие, кручение, изгиб), различных геометрических параметрах надрезов, различных абсолютных размерах образцов все эти факторы оказывают существенное влияние на чувствительность к надрезу. Рассматривают чувствительность материала к надрезу по признаку прочности, деформации, вязкости. Наибольшее значение имеют исследования, в которых образцы доводятся до разрушения. В надрезанных образцах, в силу концентрации напряжений, пластические деформации локализуются областью надреза и характер разрушения образца, хрупкий при неинструментальном осмотре, оказывается на самом деле пластичным, что обнаруживается при микроскопическом изучении.  [c.301]

Советские исследователи-прочностники показали, что закономерности усталостных разрушений металлов лежат в основе расчета деталей машин под действием переменных напряжений, а также обоснования конструктивных и технологических способов увеличения их прочности. В связи с этим важную роль играют прежде всего концентрация напряжений и абсолютные размеры, как факторы прочности деталей. Анализ значительного экспериментального материала показал существование, с одной стороны, влияния абсолютных размеров на сопротивление усталости как проявление структурной неоднородности материала и влияние дефектов его строения и, с другой, эффект неоднородности напряженного состояния (Г. В, Ужик и др.). На утомляемость деталей наряду с концентрацией напряжени и абсолютных размеров оказывают большое значение качество поверхности, свойство поверхностного слоя и влияние среды (сопротивление усталостному разрушению в коррозионных средах, кавитационные разрушения).  [c.43]

Достигнутые результаты научных исследований прочности в машиностроении нашли практическое приложение в создании новых и усовершенствовании суш ествующих методов расчета и испытания деталей машин и элементов конструкций, широко используемых промышленностью. Эти результаты, а также опыт расчета на прочность и конструирование деталей машин получили обобш ение в ряде монографий, руководств, справочников и учебников, подготовленных отечественными учеными за 50 пет Советской власти, что способствовало использованию на практике новых данных теоретических и экспериментальных работ. В ряде отраслей опубликованы руководства по прочности валов и осей, резьбовых соединений, пружин, зубчатых колес, лопаток и дисков турбомашин, корпусов котлов и реакторов, трубопроводов, сварных соединений и др. Разработанные методы расчета на основе исследований прочности оказали суш,ественное влияние на улучшение конструкций деталей машин. Они количественно показали значение для прочности деталей уменьшения концентрации напряжений, снижения вибрационной напряженности, ослабления коррозионных процессов, улучшения качества поверхности, роль абсолютных размеров и многих других факторов.  [c.44]

Причинами поломок деталей многих машин могут быть ошибки конструкторов при оценке влияния на прочность концентраторов напряжений. Например, шпоночные канавки являются очагом концентрации напряжений. Часто поломка валов начинается с трещин вблизи шпоночных канавок. Р1меются дан-  [c.125]

Содержание настоящего тома разделено на две части. В первой, посвящённой расчётам на прочность, жёсткость и колебания элементов машин и конструкций, приведены основные справочные данные по сопротивлению материалов и строительной механике для расчёта конструктивных элементов типа стержней, пластинок и оболочек в пределах и за пределами упругости, а также стержневых систем. Здесь же изложены особенности расчёта тонкостенных стержней и приведены важнейшие данные, необходимые кон-структору-машиностроителю для расчёта деталей и узлов машин на колебания. Последние три главы первой части посвящены вопросам расчёта на прочность и экспериментального определения напряжённости деталей в связи с влиянием формы и характера действующих на детали усилий. Там же приведены данные о влиянии на прочность концентрации напряжений, размеров деталей и технологии их обработки.  [c.1105]

Шероховатость и волнистость поверхности оказывают весьма значительное влияние на такие важные эксплуатационные свойства деталей машин, как износостойкость, усталостная прочность, контактная жесткость, антикоррозионная стойкость, стабильность посадок и др. Вследствие шероховатости и волнистости поверхностей сопрягаемых деталей фактическая площадь их контакта становится значительно меньше номинальной, что ведет к увеличению удельных нагрузок, нарушению масляной пленки, разрушению и деформированию выступающих неровностей. Поэтому грубые поверхности имеют низкую износостойкость1/Наличие микронеровностей вызывает концентрацию напряжений во впадинах гребешков, что приводит к появлению трещин и снижает прочность деталей (особенно деталей, работающих при знакопеременных нагрузках).  [c.52]



Смотреть страницы где упоминается термин Влияние концентрации напряжений на прочность деталей машин : [c.25]    [c.186]   
Смотреть главы в:

Расчёты на прочность в машиностроение Том 3  -> Влияние концентрации напряжений на прочность деталей машин



ПОИСК



661 —Влияние на концентрацию

Влияние концентрации напряжени

Влияние напряжений

Детали Прочность — Влияние напряжения

Детали машин напряжений

Концентрация напряжений

Концентрация напряжений — Влияние

Напряжения Концентрация — си. Концентрация напряжений

Прочность Влияние концентрации напряжени

Прочность Влияние концентрации напряжений

Прочность детали



© 2025 Mash-xxl.info Реклама на сайте