Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Взаимодействие металлов с кислородом

Рис. 9.1. Система взаимодействия металла с кислородом Рис. 9.1. Система взаимодействия металла с кислородом

Кроме того, взаимодействие металла с кислородом при сварке осложняется образованием растворов оксидов в металлах, а это сильно изменяет их термодинамическую устойчивость из-за возрастания энтропии в процессе растворения.  [c.318]

Рис. 9.5. Схема взаимодействия металла с кислородом в ненасыщенном (а) и насыщенном б) растворах Рис. 9.5. Схема взаимодействия металла с кислородом в ненасыщенном (а) и насыщенном б) растворах
Коррозия металла — это самопроизвольный химический процесс, в результате которого возникает оксид металла. Реакция взаимодействия металла с кислородом может протекать в сторону образования оксида (направление направо), в сторону диссоциации оксида (направление влево) или находиться в химическом равновесии. В последнем случае будут одновременно происходить окисление металла и диссоциация оксида таким образом, что количество металла, кислорода и оксида в системе со временем не изменяется.  [c.44]

Взаимодействие газовой фазы с металлом в контактной зоне отливки характеризуется окислительно-восстановительными реакциями. В общем виде взаимодействие металла с кислородом можно описать реакцией  [c.98]

Химическая коррозия. Характерной особенностью химической коррозии, возникающей при взаимодействии металла со средой без появления электрического тока, является то, что продукты коррозии образуются непосредственно на тех участках поверхности, которые вступают в реакцию. Чаще всего химическая коррозия происходит при взаимодействии металла с кислородом, образуя на поверхности окисные пленки. Плотную окисную пленку при химической коррозии образуют кадмий, алюминий, свинец, олово, железо, хром, медь, цинк, никель. Пористые пленки окислов, сравнительно слабо препятствующие дальнейшему окислению, образуют магний, кальций, калий, натрий, поэтому эти металлы требуют специальной защиты от кислорода окружающей среды. i  [c.159]

Все научные исследования направлены к расшифровке механизма окисления на атомарном уровне. В этой связи наиболее ясной представляется начальная стадия взаимодействия металла с кислородом — адсорбция. В литературе в настоящее время встречаются разные определения адсорбции. Для рассматриваемого случая пригодно одно из последних универсальных определений адсорбция - концентрирование (сгущение) какого - либо вещества в пограничном слое у поверхности раздела двух фаз.  [c.9]


Размеры микрокамер и их форма выбираются в зависимости от вида свариваемого металла и его толщины, режимов сварки, формы изделия. При этом микрокамеры должны обеспечивать надежную защиту инертным газом зоны металла, нагретого до температур, при которых еще может происходить активное взаимодействие металла с кислородом и азотом воздуха. При сварке циркония необходимо защищать зону металла с температурой выше 500° С (773° К).  [c.46]

Теоретические представления, лежащие в основе моделей высокотемпературного взаимодействия металлов с кислородом в равной мере справедливы по отношению к реакциям металлов с галогенами, серусодержащими и другими газами. Классификация этих процессов должна базироваться на особенностях массопереноСа компонентов в твердой и газовой фазах  [c.413]

При таких операциях, как прокатка, ковка, штамповка, нормализация, закалка и отжиг, необходим нагрев заготовок до высоких температур. В результате взаимодействия металла с кислородом в процессе нагрева поверхностные слои металла окисляются, на поверхности заготовок образуется слой окалины. Чем продолжительнее нагрев и выше температура, тем больше угар металла. При прокатке заготовок окалина закатывается в поверхность листов, что приводит к образованию поверхностных дефектов и является причиной брака металла. Не удаленная с поверхности окалина, обладающая высокой твердостью, ускоряет износ прокатных валков. Потери металла в виде окалины в металлургическом производстве в среднем составляют около 4%, на машиностроительных заводах эти потери дополнительно составляют при ковке до 7 и штамповке до 3% массы заготовки.  [c.5]

При нагреве сталей и сплавов в обычной атмосфере заметно проявляется взаимодействие металла с кислородом.  [c.120]

Рассмотрим наиболее распространенный случай газовой коррозии — взаимодействие металла с кислородом с образованием слоя оксидов по реакции  [c.28]

При взаимодействии металла с кислородом продуктами коррозии являются оксидные пленки различной толщины, от свойств которых зависит дальнейший процесс коррозии. Поэтому важно знать свойства образующихся пленок, механизм и законы их роста, отношение их к воздействию температуры, давления и т. д. Толщина образовавшихся пленок зависит от свойств металла, среды и других факторов. Пленки бывают тонкие (до 40 нм), средние (от 40 до 500 нм) и толстые (более 500 нм).  [c.28]

Коррозионно-механическое изнашивание представляет собой изнашивание при трении материала, уже вступившего в химическое взаимодействие со средой. Коррозионное изнашивание является следствием взаимодействия металла с кислородом окружающей среды. В результате такого изнашивания на поверхности металла появляются осповидные ямки, язвы, ржавчина.  [c.494]

Считают, что причиной замедления анодного растворения при пассивации могут быть два процесса во-первых, хемосорбция кислорода, растворенного в электролите, который насыщает свободные валентности поверхностных атомов металла и снижает его химическую активность во-вторых, возникновение на поверхности металла тончайшей пленки продуктов взаимодействия металла с кислородом [3]. К металлам, способным к пассивации, относятся хром, алюминий, титан, никель, железо, молибден и ряд других.  [c.8]

Химическая коррозия — процесс взаимодействия металла с электропроводящей средой. При данном типе коррозии металлы и сплавы разрушаются без воздействия электрического тока. Такая коррозия возникает при взаимодействии металла с кислородом, сильно активизируясь при повышенных температурах, а также при наличии галогенов, сероводорода, сернистого газа и т. д. Она может возникать в жидкостях, не проводящих электрический ток, если в этих средах имеются продукты, химически взаимодействующие с данным металлом, например в обезвоженной нефти и продуктах ее переработки, в которых имеются серосодержащие вещества.  [c.23]

Рассмотрим наиболее распространенный случай газовой коррозии на примере взаимодействия металла с кислородом. Известно, что поверхностный слой любого металла, т. е. поверхностные ад-ионы металла, имеет свободные связи, которые при соприкосновении с кислородом могут адсорбировать его, а затем ад-ионы металла взаимодействуют с ним с образованием слоя оксидов по реакции  [c.35]


Взаимодействие металла с кислородом (окисление металла) протекает по уравнению  [c.12]

Незащищенная поверхность металла адсорбирует из окружающей среды окислительные компоненты — молекулы кислорода, оксидов углерода и серы, хлора и другие. Образуется оксидная пленка, которая на воздухе всегда содержит конденсированную влагу. Толщина пленки может быть различной в зависимости от температуры, влажности воздуха и других атмосферных условий. В условиях сухой атмосферы происходит химическое взаимодействие металла с кислородом и другими газообразными реагентами из воздуха. Как правило, сухая атмосферная коррозия приводит к потускнению поверхности металла, не вызывая его разрушения. Железо и сталь в сухой атмосфере не корродируют даже при наличии агрессивных газов.  [c.241]

Процессы, происходящие при выплавке стали, протекают в соответствии с целым рядом законов. По закону действующих масс скорость химических реакций пропорциональна концентрации реагирующих веществ. Поэтому при взаимодействии металла с кислородом в сталеплавильной печи происходит интенсивное окисление железа по реакции  [c.44]

Наиболее важными при сварке являются реакции взаимодействия металла с кислородом, а также диссоциация, растворение и выделение в металле таких газов, как азот и водород. Большое значение имеют реакции связывания и нейтрализации водорода, а также подавления окисления углерода при затвердевании металла.  [c.47]

В широком смысле под вторичными структурами понимаются не только пленки, образующиеся в результате взаимодействия металла с кислородом, но и другие защитные пленки разного состава, строения и свойств, предохраняющие поверхности металла от непосредственного контакта.  [c.321]

Химической коррозией называют такие процессы, ири которых окисление металла и восстановление окислительного элемента происходят в одном акте, т. е. одновременно и в одном месте. Примером химической коррозии является окисление металлов — взаимодействие металлов с кислородом воздуха, с газообразным хлором, с жидкой серой и нефтепродуктами, содержащими серу, вообще взаимодействие металлов с жидкостями, не являющимися электролитами (спирт, ацетон, фреоны, сжиженный природный газ и т. д).  [c.111]

Химическая коррозия или окисление — процесс непосредственного взаимодействия металла с кислородом окружающей среды, который может содержаться как в газах, так и в различных растворах, не проводящих электрический ток (спирте, бензине, органических жидкостях и т. д.). Она развивается интенсивнее при нагреве, что приводит, например, к обгоранию нагревателей печей, окислению выхлопных клапанов и патрубков, обгоранию контактов и т. д. Если продукты реакции не улетучиваются, то они остаются в виде окисных пленок на поверхности металла. Тугоплавкие и плотные окислы, прочно связанные с металлом, замедляют дальнейшее проник-  [c.141]

Взаимодействие металлов с кислородом  [c.261]

Правило фаз Гиббса (стр. 220) в полной мере приложимо к химически реагирующим системам, особенности которых рассмотрим на процессах взаимодействия металлов с кислородом  [c.261]

Рассмотрим конкретные случаи взаимодействия металлов с кислородом на примере наиболее важных в техническом отношении металлов.  [c.267]

Взаимодействие металла с кислородом, как н с другими газами, определяется одновременно идущими процессами адсорбции и встречной диффузии атомов газа и ионов металла через слой окислов. Последние в окалине диффундируют обычно более интенсивно.  [c.25]

ВЗАИМОДЕЙСТВИЕ МЕТАЛЛА С КИСЛОРОДОМ ПРИ СВАРКЕ ПЛАВЛЕНИЕМ  [c.206]

К химическим свойствам металлов и сплавов относится способность их вступать в реакцию с различными веществами. При взаимодействии металлов с кислородом воздуха и влагой происходит их коррозия (разрушение) чугун ржавеет, бронза покрывается зеленым налетом, сталь при нагреве в закалочных печах окисляется, превращаясь в окалину, а в кислотах растворяется. Металлы и сплавы, способные противостоять коррозии, делятся на нержавеющие, кислотостойкие (кислотоупорные) и жаростойкие (окалиностойкие). Последние применяются для изготовления различных деталей топок, труб паровых котлов, сильно нагревающихся деталей автомобилей и др.  [c.10]

Заготовки из вольфрама получают методами порошковой металлургии, а также дуговой и электронно-лучевой плавкой с последующим прессованием. При всех способах плавки и спекания используют инертную газовую среду или вакуум для предотвращения взаимодействия металла с кислородом, азотом и воздухом.  [c.132]

В большинстве случаев газовая коррозия является результатом взаимодействия металла с кислородом воздуха, согласно реакции  [c.127]

Наиболее распространенным является процесс взаимодействия металлов с кислородом, хотя известны и другие виды газовой коррозии (сернистая, водбродная и др.). Химическая коррозия, имеющая место в этом случае, развивается в кислородсодержащих газах иа воздухе, в углекислом газе, водяном паре, чистом кислороде и др. Движущей силой газовой коррозии является термодинамическая неустойчивость металлов в газовых средах при данных внешних условиях давлении, температуре, составе среды и др. При этом на поверхности металла чаще всего образуется оксидная пленка. От структуры, состава и свойств этих пленок зависит скорость процесса газовой коррозии. Защитные свойства оксидных пленок в значительной степени определяются их сплошностью, которая зависит от отношения моля оксида к массе атома металла. Хорошо защищают металл от дальнейшего окисления только плотные оксиды, если отношение объемов находится S пределах 1,0—2,5 [28].  [c.407]

Окислы с Д>1, не растворяющие ионы металла или кислороду относятся к типу стехиометрических химических соединений такой окисел относительно плотный. Взаимодействие металла с кислородом при образовании стехиометрического окисла может идти нреимущественно через разрывы в окисной пленке, образующиеся вследствие различия коэффициентов термического расширения окисла и паяемого металла при нагреве и охлаждении или в результате метастабильиости слоя окисла вследствие эпитаксиального его роста и образования локальных напряжений, приводящих к образованию в нем пор и отслоений.  [c.90]


В большинстве работ, посвященных механизму защиты железа от коррозии фосфатами, высказывается мнение, что фосфатный слой осаждается из электролита, а пассивирующий окисел возникает за счет взаимодействия металла с кислородом. Роль вторичного осажденного из электролита фосфата заключается в снижении скорости растворения окисного слоя. В работах [47] было показано, что в присутствии фосфатов на анодной поляризационной кривой имеется два потенциала пассивации один из них смещен на 0,2 В в отрицательную сторону по сравнению с потенциалом обычной пассивации, наблюдаемым в боратном буфере, не содержащем фосфатов. Из этого делается вывод, что в фосфатных растворах переходу железа в пассивное состояние предшествует специфическая пассивация, обусловленная вторичным осаждением фосфата металла из раствора. Накопление на поверхности стали плохорастворимого фосфата железа создает благоприятные условия для обычной окисной пассивации.  [c.66]

Однако во всех этих опытах не контролировалось прямым определением состояние поверхности металла перед началом пассивирования. Вполне возможно, что начальное состояние поверхности металла, даже в электролите, полностью освобожденном от кислорода, не исключает наличия на поверхности металла адсорбированного кислорода и даже пленочного слоя окисла (или других соединений), образованных в результате взаимодействия металла с кислородом воды, как было установлено в нашей лаборатории для алюминия В. Н. Модестовой [46] и для титана — Р. М. Аль-товским [47]. Таким образом, не вполне ясно, следует ли определяемые экспериментально количества кислорода, меньше одного монослоя, достаточные для заметного смещения потенциала в пассивную сторону, связывать с равномерным его распределением по абсолютно непокрытой поверхности металла или считать, что этот кислород идет на заделку последних пор в уже имеющейся адсорбционной или даже фазовой пленке.  [c.16]

Чтобы определить направление реакции взаимодействия металла с кислородом по упругости диссоциации его окисла, необходимо упругость диссоциации РО2 сравнить с фактическим парциальным давлением кислорода Рогфакт в условиях реакции.  [c.48]

Процесс окисления — это сложный процесс, в результате которого наблюдаются и чисто химическое взаимодействие металла с кислородом, и диффузия атомов кислорода и металла через слой окислов. Поэтому строение окисной пленки имеет большое значение для жаростойкости металлов. Чем плотнее окисная пленка, тем меньше через нее скорость диффузии, тем выше жаростойкость сплава. До 570° С структура поверхностного слоя сталей состоит из Fea и Рез04, может. образоваться и окисел РегОз. Эти окислы имеют сложное строение и скорость диффузии в них мала.  [c.338]

Нагрев может сопровождаться взаимодействием поверхности металла с газовой фазой. Химическое взаимодействие металла с кислородом может приводить к обезуглероживанию поверхностного слоя (С -f Ог СО2) и образованию окалины в количестве до 1—3 % от массы металла (2Fe -f О2 2FeO).  [c.142]

Большинство средне- и высоколегированных сталей поддаются резке различными электрически.ми и кислороднофлюсовым способами. Лишь кислородные способы резки непригодны для их обработки, так как в результате взаимодействия металла с кислородом на лобовой поверхности реза образуется тугоплавкая пл ка окислов хрома, затрудняющая диффузию кислорода и препятствующая непрерывному течению процесса.  [c.136]

Общие требования к точности складываются из требований к получению надлежащих раз.меров и форм вырезанных дегалей (заготовок). Требования к качеству поверхности реза непосредственно связаны с взаимодействием металла с кислородом режущей струи и подогревающим пламенем в процессе резки.  [c.197]


Смотреть страницы где упоминается термин Взаимодействие металлов с кислородом : [c.341]    [c.44]    [c.398]    [c.154]    [c.149]    [c.400]   
Смотреть главы в:

Теоретические основы сварки  -> Взаимодействие металлов с кислородом



ПОИСК



Взаимодействие жидкого металла с кислородом

Взаимодействие кислородной струи с жидким металлом при верхнем подводе кислорода

Взаимодействие металла при сварке со сложными газами, содержащими кислород

Взаимодействие металла с кислородом при сварке плавлением

Кислород

Кислород в металлах

Платиновые металлы взаимодействие с кислородо



© 2025 Mash-xxl.info Реклама на сайте