Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние структуры на термомеханические свойства

При сварке плавлением сварные соединения имеют два ярко выраженных участка закристаллизовавшийся металл шва и зону термического влияния в основном металле. При сварке давлением в твердой фазе обнаруживается только вторая зона. При этом роль пластической деформации в формировании структуры и свойств сварных соединений настолько возрастает, что эту зону более правильно называть зоной термомеханического влияния.  [c.12]


Мелкодисперсные нитриды ванадия, выпадающие по дислокациям, способствуют сохранению трансформированной дислокационной структуры феррита при восстановительной термической обработке, несмотря на наличие полной фазовой перекристаллизации. Этот эффект аналогичен эффекту высокотемпературной термомеханической обработки. Но его влияние на механические свойства металла после эксплуатации и восстановительной термической обработки значительно слабее.  [c.294]

Изменить структуру, а следовательно, и свойства можно различными способами, из которых наиболее распространены легирование металлов и сплавов, деформирование их в холодном или нагретом состоянии и термическая или химико-термическая обработка. В последнее время распространение получает термомеханическая обработка, когда изменения структуры и свойств, достигнутые при деформировании суммируются с влиянием, оказываемым на них термической обработкой.  [c.5]

Между тем зависимость термомеханических свойств только от общего объема пор далеко не раскрывает влияния структуры в целом, в связи с чем требуются дополнительные исследования в этой области.  [c.134]

Монография состоит из семи глав. В гл. I рассмотрены основные положения теории фазовых превращений в металлах и сплавах в твердом состоянии, а также закономерности превращений железа, титана и их сплавов в изотермических условиях. В гл. II показаны условия их протекания в зоне термического влияния при сварке плавлением. В гл. III описаны новые методы и аппаратура для изучения кинетики фазовых превращений и изменений структуры и свойств металлов в неравновесных условиях при сварке и термомеханической обработке, а также для исследования задержанного разрушения и образования холодных трещин. В гл. IV приведены результаты исследования превращений при непрерывном нагреве, кинетики роста зерна и гомогенизации аустенита и Р-фазы сплавов титана при сварке. В гл. V рассмотрены основные закономерности фазовых превращений в условиях непрерывного охлаждения при сварке. В гл. VI изложен механизм задержанного разрушения сталей и сплавов титана, установлены критерии оценки этого явления и показано влияние легирующих элементов, параметров термического цикла и жесткости сварных соединений на" сопротивляемость этих материалов образованию холодных трещин при сварке. В гл. VII приведены характеристики свариваемости сталей и сплавов титана различных структурных классов и систем легирования, сформулированы критерии выбора технологии и режимов их сварки и показаны пути регулирования структуры и свойств сварных соединений как в процессе сварки, так и при последующей термической, термомеханической или механико-термической обработке.  [c.10]


По методике ИМЕТ-1, разработанной автором и Г. Н. Клебановым в 1952—1954 гг. [107—111], тонкие ил стандартные стержневые образцы нагревают в специальной машине током и охлаждают в соответствии с заданными термическими циклами. В процессе нагрева или охлаждения образцы могут быть подвергнуты деформации или разрыву при заданной мгновенной температуре либо в заданном интервале температур (в зависимости от скорости деформации), а также могут быть резко охлаждены в воде с целью фиксации структурного состояния. Это позволяет исследовать кинетику изменения механических свойств и структуры металла в различных участках зоны термического влияния в процессе сварки и термообработки, а также программировать и осуществлять сложные температурно-деформационные воздействия при термомеханической обработке стали (методом растяжения). G помощью этой машины можно определять и конечные изменения структуры и свойств после полного охлаждения образцов до комнатной температуры.  [c.59]

Данная глава посвящена двум формам разрушения материалов, связанным с воздействием среды, а именно — коррозионному растрескиванию под напряжением (KP) и водородному охрупчиванию. Будет рассмотрена связь этих видов коррозии с различными металлургическими факторами. В число последних входят химический состав компоненты микроструктуры (такие как тип и структура выделений, размеры и форма зерен) кристаллографическая текстура термообработка и ее влияние на уже перечисленные факторы и, наконец, некоторые технологические процессы, в частности термомеханическая обработка (ТМО), которая привлекает возрастающее внимание как метод оптимизации свойств материалов. Все названные переменные, несомненно, очень важны с точки зрения разработки новых материалов, отвечающих постоянно усложняющимся условиям эксплуатации.  [c.47]

В связи с технологическими приложениями возникает ряд дополнительных вопросов. В частности, необходимо установить влияние применяемой в данных способах своеобразной циклической термомеханической обработки на структуру и механические характеристики металла. Некоторые результаты, полученные в этом направлении, свидетельствуют о том, что прочностные и пластические свойства после формоизменения при тепло-сменах, по крайней мере, не ухудшаются. Сравнительные иопы-тания на растяжение образцов, вырезанных из трубок (рис. 146, материал — сталь 20) в исходном состоянии (верхний образец)  [c.241]

С у II о в. А. В. и др. Влияние холодного наклепа на механические свойства и тонкую структуру стали, подвергнутой термомеханической обработке. Сталь , 1965, № 9.  [c.66]

Структура и механические свойства сварного соединения изменяются не только под влиянием нагрева. Изменения происходят и при механических или термомеханических методах сварки. Часто повышение твердости и снижение пластичности в околошовной зоне происходит вследствие физического упрочнения (наклепа). Подобные явления могут, например, иметь место при холодной и ультразвуковой сварке, когда процесс образования сварного соединения сопровождается значительными пластическими деформациями без существенного нагрева.  [c.497]

ВЛИЯНИЕ ТЕХНОЛОГИИ НАПРАВЛЕННОГО ТЕРМОМЕХАНИЧЕСКОГО УПРОЧНЕНИЯ НА СВОЙСТВА И СТРУКТУРУ СТАЛЕЙ  [c.25]

Рассмотрен новый метод повышения свойств металлических сплавов, позволяющий улучшить качество и снизить металлоемкость изделий. Изложена теория процесса динамического старения, рассмотрены особенности его применения для различных сплавов, предварительно подвергнутых термической и термомеханической обработкам. Показано влияние динамического старения яя структуру и свойства сплавов различных классов — углеродистых и мартенснт-ностареющих сталей, аустенитных, жаропрочных сплавов, бронз.  [c.24]

Поиски путей создания оптимальных по своей структуре и распределению барьеров показали, что в стали и многих сплавах, испытывающих фазовые превращения, такие барьеры можно создать, если подвергнуть материал комбинированному воздействию в одном технологическом цикле пластической деформации и термической обработке. Этот технологический метод получил название термомеханической обработки (ТМО). Ей можно дать такое определение термомехантеская обработка— это совокупность выполненных в одном технологическом цикле в различной последовательности операций пластической деформации, нагрева и охлаждения сплавов, испытывающих фазовые превращения. Структура, фазовый состав и соответственно свойства сплава формируются при ТМО в условиях влияния структурных несовершенств, созданных деформацией на механизм фазового перехода и структуру новых фаз, и наоборот.  [c.532]


Необходимость получения значительно более прочных материалов, чем ныне известные (сейчас уже имеются стали, правда, получаемые пока в лабораториях, с прочностью до 300—400 кПмм ), заставила искать новые пути повышения прочности. К числу их относятся термомеханическая обработка, представляющая собой последовательное сочетание термичёской обработки с холодной деформацией металла фазовый наклеп, в котором используется свойство увеличения объема, занимаемого металлом, при некоторых фазовых превращениях (например, в железе), для деформации внешних слоев под влиянием увеличивающейся в объеме сердцевины магнитная обработка (комбинируется с термомеханической), состоящая в использовании эффекта (правда, весьма незначительного) изменения объема при намагничивании Ре облучение ядерными частицами. Технология термомеханической обработки сложна, но она позволяет получать мартенснтную структуру не в пределах  [c.296]

Как правило, порошки суперсплавов в консолидирование состоянии отличаются хорошими механическими свойствами достаточно высокой их однородностью. Ковка, если она оказывает какое-либо влияние, вызывает лишь незначител ное улучшение статических свойств, хотя при этом и набл дается тенденция к разрушению дефектной структуры п] пластическом течении металла и дшамической рекриста лизации. В то же время термомеханическая обработка прив дит к повышению минимального уровня динамических свойст значения которых определяются содержанием дефектов в м териале.  [c.240]

Было отмечено благоприятное влияние ковки консолидированного порошкового сплава Rene 95 на его долговечность при малоцикловой усталости [25,27]. Минер и Гайда [25] показали, что при высоких деформациях усталостные свойства при малоцикловых испытаниях сплавов Rene 95, приготовленных горячим изостатическим прессованием, экструзией + ковкой и литьем + деформацией, мало отличаются друг от друга. В то же время при деформациях менее 1% долговечность порошковых сплавов Rene 95 при малоцикловой усталости выше, чем литого и деформированного сплава, что объясняется более мелкозернистой структурой порошковых сплавов. Наивысшей долговечностью, как показано на рис. 17.17, обладает экструдированный и кованый материал [27]. Благоприятное влияние ковки обусловлено двумя причинами во-первых, в процессе обработки происходит более равномерное распределение дефектов по объему материала, а также возможно уменьшение их размеров,и, во-вторых, происходит дальнейшее измельчение зерна. При соответствующем выборе режима термомеханической обработки можно значительно снизить или вообще исключить вредное влияние дефектов типа первичных порошковых границ. Это хорошо видно из результатов анализа разрушения при малоцикловой усталости, представленных в табл. 17.8, которые свидетельствуют о снижении среднего размера дефектов и отсутствии дефектов типа ППГ после термомеханической обработки материала. В этом случае долговечность порошкового материала при малоцикловой усталости определяется наличием в нем небольших керамических включений.  [c.255]

В технике материалы используются при колеблющихся температурах. В одних случаях температурные колебания невелики и ими пренебрегают. В других — изменения структуры, свойств и размеров материалов настолько значительны, что дальнейшее использование их оказывается невозможным. Накапливаясь от цикла к циклу, эти изменения могут быть причиной преждевременного разрушения. Особенно опасен рост объема металлов, сопровождающийся накоплением пор и трещин. Структурная и размерная стабильность материалов снижается, если на чисто термическое воздействие накладывается влияние механических нагрузок (термомеханическая усталость), взаимодействие с агрессивной средой (термохимическая усталость), облучение частицами (терморадиацпонная усталость). Сопротивление термической усталости является важной характеристикой многих материалов современной техники.  [c.3]

Как известно, применение термомеханической обработки (ТМО) позволило существенно повысить предел прочности стали. На лабораторных образцах предел прочности стали со структурой мартенсита после ТМО достигает значений 250—350 кГ1мм . Влияние ТМО на механические свойства детально рассмотрено в работах [45—47]. Весьма важным вопросом является целесообразность использования ТМО для повышения циклической прочности стали, в особенности при наличии концентраторов напряжений. В этом направлении проведен ряд исследований 48-52].  [c.122]


Смотреть страницы где упоминается термин Влияние структуры на термомеханические свойства : [c.520]    [c.137]    [c.28]    [c.65]   
Смотреть главы в:

Структура и свойства огнеупоров  -> Влияние структуры на термомеханические свойства



ПОИСК



141 — Влияние на свойства

Свойства с а-структурой

Термомеханические свойства



© 2025 Mash-xxl.info Реклама на сайте