Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сварка алюминия и его сплавов со сталью

Известен метод сварки алюминия и его сплавов со сталью. Для осуществления такой сварки производится цинкование места стальной детали, к которому требуется приварить алюминий.  [c.171]

Более сложно осуществлять сварку плавлением алюминия и его сплавов со сталью без биметалла. Непосредственная сварка алюминия со сталью, как правило, не дает положительных результатов. Шов получается хрупким вследствие образования интерметаллидов и большого различия физико-химических свойств соединяемых металлов. Удовлетворительное соединение алюминия со сталью возможно с применением цинкового покрытия. Наличие цинка на поверхности стали улучшает растекание алюминиевой присадки. Слой цинка толщиной до 30 мм предварительно наносят на сталь гальванически или горячим погружением.  [c.682]


Так, диффузионной сваркой не удается получить достаточно прочное соединение непосредственно алюминия и его сплавов со сталью в связи с образованием в зоне соединения интерметаллидов. Алюминиевый сплав АМц сваривают со сталью 15 через слой никеля, нанесенный гальваническим методом на поверхность стали с предварительно осажденным тем же методом подслоем меди. Сварку проводят на следующем режиме температура 550 °С, сварочное давление 14 МПа, время выдержки 2 мин. При механических испытаниях сварных соединений на растяжение разрушение происходит по алюминию.  [c.24]

Особенности сварки алюминия и его сплавов. Алюминий и его сплавы имеют низкую температуру плавления (у чистого алюминия 660° С), высокую теплопроводность и электрическую проводимость, повышенный по сравнению со сталью коэффициент линейного расширения и более низкий модуль упругости.  [c.403]

Алюминий применяется в строительстве и промышленности благодаря небольшой плотности (2,7 г/см ), примерно в 3 раза меньшей, чем у стали, повышенной хладостойкости, коррозионной стойкости в окислительных средах и на воздухе. Алюминий и его сплавы имеют низкую температуру плавления (660 °С для чистого алюминия), высокую электро- и теплопроводность, повышенный по сравнению со сталью коэффициент линейного расширения. Алюминий и его сплавы существуют двух видов деформируемые (прессованные, катаные, кованые) и литейные (недеформируемые). Специфические свойства при сварке алюминия вызывают определенные трудности. Легкая окисляемость алюминия приводит к образованию на его поверхности плотной тугоплавкой окисной пленки, которая препятствует сплавлению частиц металла и загрязняет шов. Высокая температура плавления окисной пленки и низкая температура плавления алюминия, не изменяющего своего цвета при нагревании, крайне затрудняет управление процессом сварки. Большая жидкотекучесть и малая прочность при температуре свыше 550 °С вызывает необходимость применения подкладок. Значительная растворимость водорода в расплавленном алюминии и резкое ее изменение при переходе из л<идкого состояния  [c.16]

Специфические теплофизические свойства алюминия и его сплавов (высокие теплоёмкость, теплопроводность и скрытая теплота плавления при сравнительно низкой температуре плавления) определяют параметры процесса сварки. Так, при сварке алюминия необходим сварочный ток, превосходящий в 1,2-1,5 раза ток при работе со сталью, несмотря на то, что температура плавления алюминия значительно ниже, чем у стали.  [c.113]


Дуговую сварку с защитой дуги инертным газом (гелием или аргоном) применяют для производства тонкостенных труб (с прямым швом) диаметром 6—426 мм со стенкой толщиной 0,2—5 мм из высоколегированных сталей (нержавеющих и жаропрочных), никеля и его сплавов, а также из некоторых цветных металлов (алюминия, магния и др.) и их сплавов. Этим методом изго-  [c.377]

Применение комбинированных сварных узлов из стали и алюминия или его сплавов в конструкциях различного назначения (в судостроении, авиационной и химической промышленности, машиностроении, вагоностроении, кислородном аппаратостроении и пр.) весьма перспективно, так как этим достигается наибольшая эффективность работы конструкции при одновременном значительном снижении веса. Однако промышленного способа непосредственного соединения сваркой стали с алюминием или его сплавами пока нет. Существующие методы сварки обеспечивают прочность такого сварного соединения лишь на уровне прочности чистого алюминия. Это объясняется плохой свариваемостью алюминия со сталью.  [c.408]

Титан и сплавы на его основе — сравнительно новый конструкционный материал, имеющий большое будущее благодаря высокой удельной прочности в интервале 450—500 °С и хорошую коррозионную стойкость во многих средах. По прочности и коррозионной стойкости этот материал в ряде случаев превосходит нержавеющую сталь. Титан — серебристо-белый легкий металл с плотностью 4,5 г/см (плотность на 40 % меньше стали и только на 70 % больше алюминия) и температурой плавления 1650—1670°С. Свойства титана и его высокая температура плавления требуют при сварке концентрированного источника теплоты. Однако более низкий коэффициент теплопроводности и более высокое электрическое сопротивление создают условия для потребления меньшего количества электроэнергии по сравнению со сваркой стали и, особенно, алюминия. Титан практически не магнитен, поэтому при сварке заметно уменьшается магнитное дутье. Главным отрицательным свойством титана является его способность активно взаимодействовать с газами при повышенных температурах. При комнатной температуре титан весьма устойчив против окисления, но при высокой температуре он легко растворяет кислород, что приводит к резкому повышению прочности и снижению пластичности. Содержание кислорода в титановых сплавах, используемых для сварных конструкций, должно быть не более 0,15%. По эффективности воздействия на тнтан азот является более энергичным элементом, чем кислород и резко повышает его прочностные свойства, понижая пластические. Максимально допустимое содержание  [c.15]

Холодная сварка позволяет осуществлять соединения алюминия и многих его сплавов, меди, никеля, свинца, цинка кадмия, серебра, титана и других металлов, но практически пока ею можно осуществлять прочные и надежные соединения алюминия и некоторых его сплавов, меди и меди с алюминием. В тех случаях, когда необходимо получить герметичное соединение и не предъявляется высоких требований к его механической прочности, холодная сварка применяется для соединения меди с коваром и меди со сталью. Возможность использования холодной сварки для соединения разнородных металлов, таких, например, как медь с алюминием, представляет особый интерес для электромашиностроительной промышленности, где в связи с актуальностью задачи по замене меди алюминием, возникает необходимость в оконцевании выводов алюминиевых токопроводящих деталей медью, что лучше всего осуществлять этим способом. Холодную сварку удобно применять для соединения деталей, имеющих электрическую изоляцию, и для работы в огне- и взрывоопасной среде.  [c.3]

Предложено осуществлять сварку трением таких металлов через прослойку из третьего металла, хорошо соединяющегося с каждым из первых двух металлов. В частности, легированные алюминиевые сплавы успешно соединяются со сталями через прослойку из технически чистого алюминия. Технология получения таких соединений состоит из двух последовательных циклов сварки алюминиевый сплав с технически чистым алюминием и технически чистый алюминий со сталью. При этом осевой размер оставляемого перед вторым циклом сварки технически чистого алюминия должен обеспечить требующуюся конечную толщину прослойки и необходимое для сварки укорочение алюминия в процессе его осевой пластической деформации.  [c.104]


Бельчук Г. А. Дуговая сварка алюминия и его сплавов со сталью при нанесении с.лоя алюминия на сталь нагревом высокой частоты. Труды ЛКИ. Вып. XXXVI, 1962.  [c.227]

Серия горелок АР разрабатывается НИАТ. Комплект АР-10 состоит из малой, средней и большой горелок, причем малая имеет воздушное, а средняя и большая — водяное охлаждение. Для токов до 160 А имеется керамическое сопло, для больших токов — металлический наконечник. Г орелка работает на постоянном и переменном токах. Горелки ГРАД отличаются высокой надежностью, небольшими размерами и малой массой. Они имеют алюминиевый корпус, в котором смонтирован газовый клапан, комплект керамических сопел н сменных цанг работают на постоянном и переменном токах. 1 орел-ки МГ-3 и МГВ-1 разработаны НИКИМТ, широко используются в строительно-монтажных организациях. Горелка МГ-3 имеет естественное (воздушное) охлаждение и изолированное сопло. Горелка МГВ-1 с водяным охлаждением работает на токах до 400 А. Горелки РГА предназначены для сварки стыковых и угловых швов изделий из нержавеюших, жаропрочных сталей и легких сплавов в любом пространственном положении, со сварочной проволокой и без нее, на переменном и постоянном токах. Горелки оснащены керамическими соплами, а горелка РГА-400 дополнительно снабжена металличе ским изолированным соплом с водяным охлаждением. Горелка ГРСТ-1 предназначена для ручной трехфазной сварки деталей пз алюминия и его сплавов толщиной до 8 мм. Конструкция горелки предусматривает замену наконечников, цанг и вольфрамовых элек-  [c.249]

При сварке некоторых металлов, значительно отличающихся физическими свойствами (например, алюминий + сталь медь + - - титан), в зоне контакта образуются металлические соединения (интерметаллиды) толщиной порядка до 10 мкм. Уменьшение толщины таких прослоек частично достигается при использовании относительно больших давлений осадки. Весьма рациональна операция торцования контактных поверхностей, выполняемая путем протачивания их в зажимах самой сварочной машины. При сварке разнородных металлов следует избегать осевого биения более 0,15 мм. В настоящее время исследован и разработан процесс сварки трением быстрорежущих сталей с поделочными, аусте-нптных с перлитными, жаропрочных сталей с поделочными, алюминия и некоторых его сплавов со сталями разных марок, титаном,  [c.103]

Алюминий и его сплавы по сравнению со сталями обладают специфическими свойствами, которые усложняют процесс сварки. К таким свойствам следует отнести следующие высокую степень сродства к кислороду и образование, прочного оксида алюминия (А12О3) в виде  [c.112]

По прочности и коррозионной стойкости титан и его сплавы в ряде случаев превосходят нержавеющую сталь Х18Н19. Титан химически стоек, имеет в 4 раза меньший коэффициент теплопроводности и в 5 раз более высокое электрическое сопротивление по сравнению со сталью, поэтому для его сварки тратится меньше электрической энергии, чем для стали и алюминия. Однако высокая температура плавления требует при сварке применять более концентрированные источники  [c.13]

Холодная сварка — способ соединения с пластической деформацией деталей без специального нагрева. Для соединения деталей на воздухе при этом способе необходима большая, а в глубоком вакууме незначительная деформация. С увеличением степени деформации пластичность металла (в частности, алюминия) падает, а прочность и пластичность его соединений повышаются (рис. 69). Холодной сваркой можно соединять медь, свинец, серебро, железо с алюминием, никелем и медью, медь со сталью 1Х18Н9Т, серебро с медью и его сплавами, алюминий с никелем, цинком, оловом, кадмием, цирконий со сталями и алюминием, а также чувствительные к перегреву молибден, титан и упрочненные алюминиевые сплавы между собой. Из-за наклепа и упругих напряжений холодной сваркой трудно сваривается железо, ниобий, а также сплавы ВТ1 и АМгб.  [c.101]

Особенности сварки сплава 0Т4 с коррозионно-стойкими сталями исследованы на примере его соединения со сталями 12Х18Н10Т и Х22Н6Т. Механические свойства соединений во многом напоминают свойства чистых металлов. По данным послойного спектрального анализа, взаимная диффузия железа и титэ[на при сварке сплавов со сталями сопровождается диффузией хрома, алюминия и никеля. Причем в переходной зоне концентрируются хром и алюминий. Изме-  [c.156]

Сварка стали. При условии соблюдения всех приведенных выше указаний сварка стали обыкновенного качества, как напримеп применяемой в котлостро-ении, не представляет никаких особенных затруднений. Иначе однако обстоит дело со сваркой легированных сталей. С повышением в стали содержания углерода сваривать ее становится труднее. Электродами, богатыми углеродом, применяемыми для твердых С., можно сваривать лишь при обратной полярности (- - на электроде). Наоборот, сталь с присадкой никеля и марганца сваривается особенно хорошо. Эти металлы, как и хром, влияют на сплав в том направлении, что он сохраняет свою структуру, полученную при нагреве, также и по охлаждении до комнатной Г, благодаря чему ему можно придать вязкость и легкую обрабатываемость. Одновременно с этим такое состояние характеризуется и немагнитностью. Подобные стали называются аустенитовыми. Они служат также для изготовления нержавеющих сталей. Другие присадки, как вольфрам, олово, алюминий, мышьяк и титан, если только содержание их в сплаве превышает известный процент, чувствительно понижают степень его пригодности к свариванию. К нежелательным примесям при дуговой С.относятся также сера и фосфор,общее содержание к-рых в стали не должно превышать 0,06 %. Фосфор один не влияет на С., но может привести к холодно-ломкости. Т. о., если дело идет о С. высококачественных сталей, сварщик весьма заинтересован в их составе. В общем требуется, чтобы для С. применялись по возможности только хорошо свариваемые аустенитовые стали. Поглощение газов всегда вредно отражается на С., кислород ведет к хрупкости, а азот—к образованию неплотной, сильна  [c.117]



Смотреть страницы где упоминается термин Сварка алюминия и его сплавов со сталью : [c.141]    [c.62]    [c.167]    [c.142]    [c.216]    [c.227]    [c.227]    [c.149]   
Смотреть главы в:

Справочник по сварке Том 4  -> Сварка алюминия и его сплавов со сталью



ПОИСК



Алюминий и его сплавы, сварк

Алюминий и сплавы алюминия

Сварка алюминия и его сплавов

Сварка алюминия и его сплавов ед-, — низколегированных сталей

Сварка алюминия и его сплавов низкоуглеродистых сталей

Сварка сталей и сплавов

Сплав алюминия

Сплавы Сталь

Сталь Сварка



© 2025 Mash-xxl.info Реклама на сайте