Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Законы изменения и сохранения энергии материальной точки

Закон сохранения полной механической энергии материальной точки. Из теоремы об изменении кинетической энергии, выраженной формулой (12.1) при дополнительных условиях, которые сейчас будут рассмотрены, вытекает закон сохранения полной механической энергии ею называют сумму кинетической и потенциальной энергий материальной точки. Полная энергия обозначается через Е и выражается формулой  [c.122]


Сказанное в 108 по отношению к отдельной материальной точке можно обобщить и на механическую систему материальных точек. Поэтому мы можем аналогичным образом сформулировать и доказать теорему о законе сохранения механической энергии для механической системы. Для вывода этой теоремы напомним, что теорема об изменении кинетической энергии механической системы записывается так (29, 107)  [c.667]

Однако не всегда оказывается возможным или удобным учитывать работу сил в виде изменения потенциальной энергии системы. Если систему нельзя рассматривать как изолированную, то, помимо внутренних сил, действующих между точками системы, на некоторые точки могут действовать внешние силы и работа этих сил не люжет быть учтена как изменение потенциальной энергии системы. Тогда закон сохранения энергии должен быть формулирован иным образом. Обозначим внутренние силы, работа которых учитывается в виде изменений потенциальной энергии, по-прежнему через F,-., а внешние силы, работа которых не учитывается в виде изменений потенциальной энергии, — через Ф,-. Уравнения движения материальных точек системы после скалярного умножения их на соответствующие бесконечно малые перемещения dXi будут иметь вид  [c.142]

Мы получили закон сохранения механической энергии для системы материальных точек. Полная энергия (сумма кинетической и потенциальной энергии) изолированной системы, в которой действуют только консервативные силы, есть величина постоянная, какие бы механические изменения не происходили внутри системы. Это означает, что если система переходит из состояния 1 в состояние 2, то ее энергия сохраняется  [c.156]

Теорема об изменении кинетической энергии системы. Закон сохранения полной механической энергии. Теорему об изменении кинетической энергии для одной материальной точки мы получили в 12. Напишем теперь уравнение (12.1) этой теоремы для каждой точки системы подробней, выделив в правой части уравнения сумму работ заданных сил и сил реакции  [c.138]

Прямая задача динамики для системы материальных точек сводится к решению системы ЗN дифференциальных уравнений, так как уравнение движения вида (11.1) для каждой из N точек системы дает в проекции на координатные оси три дифференциальных уравнения для координат точки хД/),>>Д ), ,(/). Строгое аналитическое решение удается найти лишь в исключительных случаях, поэтому обычно используют приближенные методы. Однако существует несколько строгих общих законов, которые хотя сами по себе и не позволяют в общем случае найти траектории отдельных точек системы, вместе с тем дают важную информацию о движении системы в целом. Это закон (или теорема) о движении центра масс и три закона изменения и сохранения импульса, момента импульса и механической энергии системы материальных точек. Их выводу и обсуждению посвящена настоящая глава.  [c.38]


Рассматривая законы количеств движения и кинетических моментов, мы видели, что при некоторых условиях имели место законы сохранения количеств движения или кинетических моментов, представлявшие собой с математической точки зрения первые интегралы уравнений движения, ибо в них не фигурировали производные второго порядка. Сформулируем теперь аналогичный закон сохранения для рассматриваемого закона изменения кинетической энергии если все силы, действующие на точки материальной системьс, потенциальны, то во все время движения системы сумма кинетической и потенциальной энергии,  [c.211]

Во второй части книги излагается первый закон термодинамики. В начале этой части записано Первое начало теории тепла есть ке что иное, как принцип сохранения энергии в приложении к явлениям, протекающим с выделением или поглощением тепла. Чтобы найти общее дедуктивное доказательство этого принципа, можно выбрать два различных пути. Можно а priori стать на точку зрения механического понимания природы, т. е. принять, что все изменения в природе могут быть сведены к движениям не изменяющихся материальных точек, между которыми действуют силы, имеющие потенциал.  [c.244]

Если система не находится во внешнем поле, то все моменты времени для такой системы равноправны так же, как и все направления пространства. В классической и квантовой механике из этого обстоятельства вытекает закон сохранения энергии. Кроме того, в классической механике уравнения движения инвариантны по отношению к замене t— 1. Пусть, например, мы имеем решение уравнений Ньютона, описывающих движение системы материальных точек. В момент времени Ь — Ьу радиусы-векторы точек и их скорости равны ( ), 1 ) и по истечении некоторого промежутка времени = а — в момент эти величины принимают значения ( 2), Vi (t . Инвариантность уравнений по отношению к замене t— I означает, что существует также решение, характеризующееся тем, что радиусы-векторы и скорости материальных точек, равные r lt2), — переходят за тот же произвольно выбранный промежуток времени в Такой симметрией обладают не все системы. Примером может Jfyжить система заряженных частиц в магнитном поле. В этом случае, как известно (см., например, [И]), в операцию обращения времени необходимо включить изменение направления магнитного поля на противоположное. Если же этого не сделать, то для системы обратимости во времени не существует. Поскольку классическая механика является предельным случаем квантовой механики, то следует ожидать, что обратимость во времени найдет свое  [c.118]

В первой главе было показано, что задача о движении одной точки имеет обнхее решение для сравнительно широкого класса сил. Задача о движении двух точек также имеет общее решение в квадратурах при достаточно общих предположениях о силе взаимодействия между точками (см. 3.1). Однако отыскание общего решения задачи трех и более точек при достаточно общих предположениях о силах взаимодействия встречает непреодолимые трудности. В связи с этим общие теоремы, справедливые при любом числе материальных точек, приобретают громадное значение. Такими универсальными теоремами являются законы изменения и сохранения импульса, кинетического момента и энергии. Рассмотрим ЭТ1И законы для механических систем свободных точек (см. с. 26), или, кратко говоря, для свободных систем.  [c.60]

Математическая трактовка принципа сохранени ГИИ составляет основую ценность работы Гельм что же касается его философских обобщений, то многом уступали обобщениям Майера. Гельмгольц все явления природы к механическому движению, теризуя материю как систему материальных точек, которыми действуют силы притяжения и отталк Подобное воззрение Гельмгольца привело его к огр, ной количественной трактовке закона сохранения э к непониманию качественных взаимопревращений ных форм энергии, тогда как самые сильные сторон щений Майера состоят именно в утверждении кач ных изменений, взаимопереходов одной формы дв1 в другую.  [c.208]



Смотреть страницы где упоминается термин Законы изменения и сохранения энергии материальной точки : [c.240]    [c.380]   
Смотреть главы в:

Курс теоретической механики для физиков Изд3  -> Законы изменения и сохранения энергии материальной точки



ПОИСК



ЗАКОНЫ ИЗМЕНЕНИЯ И СОХРАНЕНИЯ ИМПУЛЬСА КИНЕТИЧЕСКОГО МОМЕНТА И ЭНЕРГИИ Законы изменения и сохранения Импульса и момента импульса материальной точки

Закон изменения

Закон сохранения

Закон сохранения энергии

Закон точки

Материальная

Сохранение

Сохранение энергии

Теорема об изменении кинетической энергии при движении несвободной материальной точки. Закон сохранения энергии. Движение по инерции

Точка материальная

Энергия изменения



© 2025 Mash-xxl.info Реклама на сайте