Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коэффициент агрессивности

Таким образом, лабораторные работы должны свестись к определению коэффициента агрессивности К, который равен  [c.79]

Рис. 10. Изменение коэффициента агрессивности во времени при действии раствора соляной кислоты концентрацией 6 л Рис. 10. Изменение коэффициента агрессивности во времени при действии раствора <a href="/info/44836">соляной кислоты</a> концентрацией 6 л

Значение коэффициента агрессивности К .  [c.84]

Иллюстрируем предложенные расчеты на примере коррозии мелкозернистого бетона на стерлитамакском портландцементе в соляной кислоте при Г = 293°К. Результаты определения коэффициентов агрессивности растворов соляной кислоты приведены в табл. 4.  [c.89]

Рис. 2.41. Зависимость точки росы продуктов сгорания сернистых топлив от коэффициента агрессивности Рис. 2.41. Зависимость <a href="/info/12759">точки росы</a> <a href="/info/30325">продуктов сгорания</a> сернистых топлив от коэффициента агрессивности
Степень несимметричности блуждающего тока в сочетании с частотой в общем случае определяет величину коэффициента агрессивности блуждающих токов - Ка. В интервале частоты 0.05 -н  [c.92]

Известен также метод микроскопического исследования диффузии, основанный на явлении получения резкой границы , который позволяет определить, как глубоко проникла в материал диффундирующая с еда. Метод сводится к тому, что образец окрашивается соответствующим индикатором и погружается в раствор агрессивной жидкости. Продиффундировавшая жидкость изменяет цвет образца, обозначая резко границу окраски. Величину коэффициента диффузии вычисляют по уравнению  [c.364]

Способность сплава длительное время выдерживать воздействие агрессивных сред при высоких температурах зависит не только от диффузионно-барьерных свойств пленок продуктов реакции, но и от адгезии таких пленок к основному металлу. Нередко защитные пленки отслаиваются от поверхности металла во время циклов нагревания — охлаждения, так как коэффициенты расширения пленки и металла неодинаковы. Американское общество по испытанию материалов провело ускоренные испытания [58 ] на устойчивость различных проволок к окислению. Испытания заключались в циклическом нагревании проволоки (2 мин) и охлаждении (2 мин). Попеременное нагревание и охлаждение заметно сокращает срок службы проволоки по сравнению с постоянным нагревом. Срок службы проволоки в этих испытаниях определяется временем до разрушения или временем до увеличения ее электрического сопротивления на 10 %. В соответствии с уравнением Аррениуса, зависимость срока службы т (в часах) проволоки от температуры имеет вид  [c.205]


Можно так>ке, не задаваясь величиной т, определять допускаемую длину трещины, исходя из докритического роста трещины Z — 1о (при этом коэффициент т определяется величиной 1с и). Запас на докритический рост необходим при длительном статическом нагружении, в агрессивных средах, при эффектах ползучести и замедленного разрушения, коррозии под напряжением, повторном циклическом нагружении и др. В этих случаях расчет на однократное нагружение должен дополняться расчетом на долговечность.  [c.293]

Этими условиями определяются требования к футеровке подового камня большая механическая прочность при рабочей температуре, минимальный коэффициент линейного расширения, стойкость против размывания интенсивно циркулирующим металлом, химическая стойкость по отношению к расплавленному металлу и его окислам, хорошие электроизоляционные свойства при высоких температурах. Соответствие этим требованиям достигается точным соблюдением заданной рецептуры футеровочной массы, ее гранулометрического состава и технологии набивки, сушки и разогрева подовых камней (27, 40]. И в СССР и за рубежом ведутся исследовательские работы по созданию новых огнеупорных материалов для подовых камней, пригодных для работы при более высоких температурах и с более агрессивными металлами.  [c.271]

Коррозионная агрессивность водонефтяной эмульсии меняется в широких пределах в зависимости от состава водной фазы, ее соотношения с углеводородной фазой, состава и количества газообразных веществ. В пластовых условиях в нефти и пластовой воде растворено значительное количество газообразных предельных углеводородов, углекислого газа, сероводорода, кислорода. Коэффициент растворимости некоторых газов в воде при 20 ° С и давлении 0,1 МПа имеет, по М. Маскету, следующие значения  [c.124]

Свинец отличается высоким удельным весом, низкой температурой плавления, высокой пластичностью, малой прочностью, высоким удельным электросопротивлением и высоким коэффициентом линейного расширения. Ои обладает также хорошей смазывающей способностью, высокой коррозионной стойкостью во многих агрессивных средах хорошо сопротивляется вибрационным нагрузкам.  [c.303]

Скорость роста длинных усталостных трещин зависит от коэффициента интенсивности напряжения (КИН), и между ними установлена S-образная зависимость при неизменном уровне напряжения, которая аналогична зависимости, представленной на рис. 3.1а. Вид и положение кинетической кривой существенно зависят от условий нагружения и геометрии детали. Поэтому далее, рассматривая процесс развития разрушения, мы будем разделять нагружение материала (образец) в тестовых условиях и при многопараметрическом воздействии на деталь в лаборатории, на стенде или в эксплуатации. Тестовые условия используют для определения механических характеристик материала, когда применительно к испытаниям стандартных образцов оговорены их размеры, частота нагружения, температура, степень агрессивного воздействия окружающей среды и прочее. Элементы конструкций, в большинстве случаев, существенно отличаются по геометрии от стандартных образцов, и условия их нагружения, как правило, не соответствуют тестовым условиям опыта.  [c.132]

При этом возможны два противоположных действия коррозионного растворения металла в концентраторе обычный механохимический процесс, приводящий к появлению коррозионно-механической трещины, и растравливание металла с затуплением вершины концентратора, приводящее к уменьшению теоретического коэффициента концентрации напряжений. Какое из них будет преобладающим, зависит от конкретных условий, степени агрессивности среды, формы концентратора, условий нагружений, микроструктурных и химических неоднородностей и т. д.  [c.230]

Графитовая ткань обладает низким коэффициентом термического расширения и не плавится при повышенных температурах. Прочность ее при этом даже увеличивается. К числу других ее положительных характеристик относятся высокая теплопроводность, инертность практически во всех агрессивных средах, низкая плотность, способность замедлять нейтроны. Однако волокна из графита могут окисляться на воздухе и химически взаимодействовать с металлами. Для защиты от окисления н улучшения совместимости с металлической матрицей на эти волокна электрохимическими методами наносят металлические и керамические покрытия.  [c.124]


Высокая агрессивность и биологическая активность морской воды, способствующая биологической коррозии и обрастанию аппаратуры при ее использовании, рассмотрены в предыдущей главе. Они определяют необходимость использования специальных мер защиты аппаратуры от коррозии в морской воде, тем более что микробиологическое обрастание толщиной 250 мкм на теплообменнике, в котором протекает морская вода, на 50 % уменьшает коэффициент теплопередачи.  [c.26]

Встречаются случаи, в которых рассчитываемый элемент предназначается для работы в условиях, так или иначе отличающихся от обычных (например, элемент предназначается для работы в агрессивной среде или для работы во временном сооружении). Это обстоятельство находит отражение при определении минимальной несущей способности — вводится специальный, так называемый коэффициент условий работы т. Окончательно выражение для минимальной несущей способности приобретает вид  [c.212]

Достижения в исследовании влияния кремния нашли свое отражение в фирменной модификации стали 4340, названной 300 М, содержащей от 1,5 до 1,8% 51. В отношении механизма высказывались предположения, во-первых, что при наличии кремния е-карбид не может быть эффективным катодным центром для разрядки водорода [9, 17], во-вторых, что карбид повышает стойкость к растрескиванию, являясь ловушкой водорода [26], и, в-третьих, что кремний уменьшает коэффициенты диффузии вредных примесей, в частности водорода [15, 16]. Таким образом, роль кремния по существу не выяснена и может быть сложной, но положительный эффект хорошо подтверждается, особенно в случае высокопрочных сталей. Повышение стойкости сталей при введении кремния представляет резкий контраст по сравнению с отрицательным влиянием марганца, поэтому было бы целесообразно выбрать именно кремний в качестве легирующей добавки для повышения прочности и закаливаемости сталей, используемых в агрессивных средах. Однако такие добавки могут ухудшать обрабатываемость и свариваемость сталей, так что применение высоких концентраций кремния потребует тщательной разработки сплава с учетом всех свойств.  [c.55]

Особенность формулы (6.45) заключается в том, что в ней взамен номинального коэффициента агрессивности К следует ставить расчетный коэффициент агрессивности Г расч ). который равен  [c.88]

Для кислых агрессивных сред, распространенных на заводах нефтехимии, а именно для НС1, H2SO4, H2 I OOH и для HNO3, коэффициенты агрессивности К, в зависимости от водоцементного отношения w и концентрации агрессивного вещества Сго, могут быть определены по диаграммам, составленным при Г=293°К (рис. 16)  [c.89]

Рис. 16. Номограммы лзолняий коэффициента агрессивности кислот ло отношению к бетону а —соляной кислоты б — монохлоруксусной кислоты в — серной кислоты Рис. 16. Номограммы лзолняий коэффициента агрессивности кислот ло отношению к бетону а —<a href="/info/44836">соляной кислоты</a> б — <a href="/info/44826">монохлоруксусной кислоты</a> в — серной кислоты
Косвенным, но надежным признаком того, что сернокислотную коррозию для некоторых топлив можно не принимать во внимание, является отсутствие коррозии выходных участков воздухоподогревателей, работающих с температурой более 80 °С. Как показали исследования при сжигании смеси сернистых углей марок ДР и ГСШ, содержание SO3 в дымовых газах почти на порядок меньше, чем в дымовых газах мазутных котлов. Серосодержание смеси этих топлив составляло 2,1—2,6%. Значения коэффициента агрессивности для этих углей 0,08—0,11.  [c.105]

В условиях, когда применение жидких масел невозможно (работа при высоких или нтких температурах, при радиации, в химически агрессивных средах, глубоком вакууме) или неэффективно (при колебательных движениях малой амплитуды, при ударных и высокочастотных нагрузках), применяют сухопленочиые смазки на основе сульфидов, селе-нидов и теллуридов Мо. W, V и др. со связками металлических Ре, N1, Ag, Аи. Коэффициент трения сочленений с сухоплеиочными смазками / 0,1 0,25.  [c.31]

Графитовые подшипники обеспечивают низкий коэффициент трения (0,04... 0,05), сохраняют свои антифрикционные свойства в широчайшем диапазоне температур (от —200 до и обладают высокой теплопроводностью и коррозионной стойкостью. Поэтому их применяют в условиях затрудненно 1 смазки или невозможности смазки, ири работе в агрессивных средах, нри высоких или низких температурах. Эти материалы хорошо себя зарекомендовали в 1)ыстроходных подшипниках с газовой смазкой (в условиях трения без смазочного материала при пуске),  [c.381]

Подшипники, смазка которых не может быть гарантирована или недопустима по техническим условиям (например, высокие и низкие температуры некоторые агрессивные среды машины, где смазка может вызвать порчу продукции, н т. п.), выполняют из материалов на основе фторопласта-4. Фторопласт-4, как материал для подшипников, обладает уникальным комплексом свойств низкий коэффициент трения (/ 0,5.. . 0,1) широкий диапазон рабочих температур малая набухаемость, высокая химическая стойкость и др. Однако широкому его применению для изготовления подшипников препятствовали низкие нагрузочная способность и теплопроводность. Для повышения нагрузочной способности и теплопроводности создан новый антифрикционный материал — металлофторо-пласт (рис. 3.153), состоящий из стальной основы / и тонкого слоя (0,3.. . 0,4 мм) 2 сферических частиц бронзы, поры между которыми  [c.415]

В процессе эксплуатации воздуховохов удаляемые аэрозоли осаждаются на их стенках в виде конденсата или пилевых частиц, существенно изменяя шероховатость труб. Изменение внутреньей поверхности воздуховодов происходит также за счет корродирующего действия агрессивных паров и газов. В зависимости от вида производства, н котором эксплуатируются вентиляционные системы, коэффициент а может изменяться в существенных пределах (см. табл. XV.6). Для газопроводов 1,южио принимать о = 0,04—0,05.  [c.276]


Наибольшее применение в качестве износостойких покрытий для материалов триботехнического назначения получили титансодержащие покрытия, в частности нитриды и карбиды титана. Нитриды характеризуются высокой твердостью, термо- и износостойкостью они не взаимодействуют с расплавленными металлами и со многими агрессивными средами (H2SO4, НС1 и другие кислоты). Однако нитриды хрупки, имеют низкую стойкость против окисления, плохую сцеп-ляемость и высокий коэффициент теплового расширения. Карбид титана более стоек к окислению, чем нитрид, является хорошим проводником при высоких температурах, устойчив в среде азота при 2500°С, не растворяется в H I.  [c.247]

Все металлы платиновой группы характеризуются высокой химической стойкостью па воздухе они покрываются тонкой окнс-иой пленкой н длительное время сохраняют первоначальный вид. Основные физико-химические свойства их приведены в табл. 31 Платиновые покрытия стойки в агрессивных средах и не окисляются даже при 110 °С. поэтому они применяются для работы при высокой температуре в коррозионной атмосфере. Коэффициент отражения платины в видимой части спектра 70 %, в инфракрасной — 96 %. Платиновые покрытия также характеризуются высокой стойкостью в условиях механического и эрозионного износа и поэтому пригодны для покрытия электрических контактов.  [c.74]

Численными критериями проницаемости являются коэффициенты проницаемости Ки и фильтрации К . В работах С. С. Бартенева и др. [15, 127, 128, 130] подробно рассматривается влияние формы норовых каналов, открытой пористости, давления газа и других факторов на коэффициент фильтрации. Проницаемость увеличивается с ростом пористости, а также зависит от перепада давлений в образце, толщины и анизотропии покрытия. Обычно наблюдается четкая корреляция между значениями пористости и проницаемости. Это обстоятельство может быть использовано, в частности, для выявления микротрещин в покрытиях [15]. При анализе детонационных и плазменных окисных покрытий было обнаружено, что газопроницаемость на порядок и более превосходит значение их открытой пористости. В результате микроскопических исследований покрытий зафиксировано наличие микротрещин, которые, незначительно увеличивая пористость, резко повышают газопроницаемость. Проницаемости окисных покрытий, полученных разными методами, могут различаться на пять порядков, но даже наиболее плотные детонационные покрытия не смогут надежно защитить основной металл от коррозии в-особо агрессивных средах [118, 131].  [c.81]

Четыреххлористый углерод. Сравнительные опыты по коррозионному растрескиванию нескольких титановых сплавов в четыреххлористом углероде СС1 показали близость критических значений коэффициента интенсивности напряжений к таковому при развитии трещин в водных растворах Nз I. Скорость распространения трещин под воздействием СС1, выше, чем в парах метилового спирта. Наиболее агрессивно СС1д действует на первой стадии коррозионного растрескивания—инициирования трещины он нарушает пассивную пленку даже при отсутствии напряжений растяжения.  [c.55]

При изменении частоты нагружения в широком диапазоне частот можно наблюдать постепенный переход от одной рассмотренной выше диаграммы роста усталостных трещин в коррозионной среде к другой применительно к титановому сплаву Ti-8Al-lMo-lV [149] (рис. 7.37). Пороговая величина Kis рассматривается при этом неизменной характеристикой влияния агрессивной среды на материал. В связи с этим безразмерная поправка на скорость роста трещины при изменении частоты нагружения также представляет собой поверхность, аналогичную тем, что были рассмотрены в главе 6 применительно к роли двухосного нагружения и асимметрии цикла. В частности, применительно к различным маркам сталей при фиксированном значении коэффициента интенсивности может быть получена поправочная функция F(pH) на влияние агрессивной среды, аналогично соотношению (7.25). Один из вариантов такой поправки, предложенной в работе [150], представлен на рис. 7.38 в сопоставлении с экспериментальными данными для трех марок сталей.  [c.394]

При измерениях существенным источником оилибок может быть непостоянство температуры. Как правило, в зонды для компенсации изменений сопротивления, связанных с изменением температуры, вводят два датчика - один находится в агрессивной среде, другой защищен от ее воздействия. Чтобы обеспечить влияние различий в температурных коэффициентах сопротивлений этих датчиков, рекомендуется изготовлять их из одного и того же металла.  [c.114]

При нижеперечисленных затрудненных условиях эксплуатации должны применяться особостойкие изоляционные материалы в особо агрессивных средах, при высоких температурах и высоких давлениях. Среди органических изоляционных материалов, выдерживающих очень высокие химические нагрузки, можно назвать фторированные пластмассы (полимеры), например политетрафторэтилен (тефлон). При повышенных температурах и давлениях применяют керамические изоляционные материалы, например фарфоровые изоляторы или стеклянные проводки для ввинчиваемых анодных заземлителей, рассчитанных на высокие давления. У керамических материалов необходимо принимать во внимание хрупкость и различие в коэффициентах линейного термического расширения.  [c.207]

Исследование скорости развития трещины в зависимости от уровня нагружения, свойств материала, среды и внешних факторов (поляризации, давления и температуры) [8,50]. При таком подходе данные о закономерностях роста трещин иод воздействием агрессивной среды и механических напряжений представляют в виде зависимостей скорости роста трещин при статическом (ко розионное растрескивание) или- динамическом (коррозионная усталость) нагружении от максимального (амплитудного) коэффициента интенсивности К цикла. При этом данные для построения указанных зависимостей (диаграмм разрушения) получают при испытании стацдаргных образцов с трещинами, образовавшимися на образцах в процессе периодического (усталостного) нагружения их на воздухе. Подрастание трещины во времени измеряют по изменению электросопротивления образца, оптическим методам по податливости материала и т. п. Испытания проводят iipn заданной температуре среды, накладывая, по необходимости, на образец анодную или катодную поляризацию. По полученнь м данным рассчиты-  [c.132]

Адгезионная прочность за короткий промежуток времени снижается до постоянного уровня, который не меняется в течение длительного времени экспозиции. Анализ приведенных зависимостей показал, что время падения адгезионной прочности складывается из времени проникповення агрессивной среды к поверхност. металла н времени, необходимого для развития коррозионных процессов ria металле. Это время можно оценить с помощью коэффициента диффузии и коэффициента проницаемости среды через покрытие.  [c.47]

Первое предельное состояние защитного покрытия, наступающее в результате коррозионного растрескивания, характеризует величина порогового значения коэффициента интенсивности напряжения Kis , выше которого наблюдается резкое увеличение скорости роста трещин. Значения порогового Krs определяют с помощью оптического индикаторного метода, которым контролируется глубина проникновения среды в вершине трещины, В тех случаях, когда коэффициент интенсивности напряжений Ki меньше критического, трещина не растет и агрессивная среда равномерно проникает в глубь материала через трещину. Если Ki больше критического, в устье трещины возникает зона разрыхленного материала (зона предразрушения), в которую более интенсивно проникает агрессив-  [c.48]


Химическая стойкость пластмасс оценивается по коэффициенту диффузии, сорбции и проницаемости, определяемых по данным изменения массы образца во времени (ГОСТ 12020—72). Испытания прекращают либо при достижении сорбционного равновесия, либо при явном растворении или химической десгрукции (типичные графики изменения массы образцов пластмасс приведены на рис. 14), либо при изменении механических свойств образцов пластмасс в агрессивной среде.  [c.54]


Смотреть страницы где упоминается термин Коэффициент агрессивности : [c.47]    [c.62]    [c.62]    [c.92]    [c.133]    [c.80]    [c.601]    [c.30]    [c.397]    [c.7]    [c.47]    [c.181]    [c.199]   
Смотреть главы в:

Коррозия железобетонных конструкций зданий нефтехимической промышленности  -> Коэффициент агрессивности



ПОИСК



С агрессивная



© 2025 Mash-xxl.info Реклама на сайте