Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кавитационное разрушение в гидравлических машинах

П. Кавитационное разрушение в гидравлических машинах  [c.618]

Шероховатость поверхности влияет на условия смазки, трение, теплопроводность и герметичность стыков, отражательную и поглощающую способность поверхностей, сопротивление протеканию газов и жидкостей в трубопроводах, сопротивление кавитационному разрушению в гидравлических машинах и другие характеристики поверхностей и сопряжений.  [c.124]

Повышение чистоты поверхности оказывает влияние и на ряд других эксплуатационных характеристик (повышение сопротивления кавитационному разрушению деталей гидравлических машин, уменьшение отложений нагара в двигателях внутреннего сгорания, уменьшение коэффициента трения, улучшение отражательной способности, уменьшение сопротивления протеканию газов и жидкостей, повышение плотности стыков в соединениях, улучшение теплопроводности стыков, улучшение внешнего вида).  [c.307]


Шероховатость поверхности оказывает влияние на условия смазки, теплопроводность стыков, герметичность стыков в соединениях, отражательную и поглощающую способность поверхностей, условия протекания газов и жидкостей в трубопроводах, сопротивление кавитационному разрушению деталей гидравлических машин и другие характеристики поверхностей и сопряжений. Все это требует обеспечения в производстве вполне определенных характеристик шероховатости поверхностей и ее контроля.  [c.173]

Изменение в широких пределах рабочих параметров гидравлических машин (напора, расхода, мощности) приводит к тому, что в ряде случаев, несмотря на принимаемые меры, машины работают в режимах с развитой кавитацией. Помимо ухудшения энергетических характеристик машин, повышения вибрации и уровня шума, отрицательные последствия кавитации проявляются в кавитационном разрушении рабочих органов машины. При наличии в воде взвешенных наносов интенсивность этого разрушения резко возрастает вследствие абразивного износа. Механические повреждения рабочих органов гидравлических машин в результате кавитационной эрозии или истирающего действия абразивных частиц могут за относительно короткий срок достигнуть размеров, затрудняющих нормальную эксплуатацию машин и даже делающих ее практически невозможной.  [c.5]

ВЛИЯНИЯ на рабочие характеристики машины. Необходимо, од-нако, отличать степень местной кавитации от степени кавитации для машины в целом, определение которой носит скорее качественный характер. Упомянутые выше замечания относятся к степени местной кавитации. В гидравлической машине течение имеет сложный характер, и поэтому, как указывалось ранее, кавитация может быть обнаружена в нескольких местах, в которых условия ее возникновения различны. Таким образом, степень кавитации на самом повреждаемом участке поверхности может быть относительно высокой, в то время как на следующем таком участке кавитация только зарождается. Кавитация и кавитационное разрушение на наименее повреждаемых участках может начаться только тогда, когда степень кавитации для машины в целом довольно высока.  [c.619]

В гл. 8 и 9 были рассмотрены факторы, объясняющие образование глубоких впадин или трещин в областях кавитационного разрушения, а также причины существования инкубационного периода, наблюдаемого при испытаниях на вибрационных установках и возможные аналоги этого явления при кавитации в потоках жидкости. Подобные эффекты могут наблюдаться при сложных течениях в гидравлических машинах. В гидравлическом оборудовании довольно часто обнаруживают глубокие локализованные выемки на разрушенной поверхности, а в некоторых случаях даже сквозные отверстия в направляющих поверхностях. На фиг. 11.5 показана лопасть колеса турбины, подверженная такому разрушению. При рассмотрении глубоких выемок можно видеть, что направление впадины не обязательно определяется структурой потока, примыкающего  [c.620]


Изнашивание при кавитации деталей гидравлических машин — хрупкое разрушение поверхности металла, обусловленное местными гидравлическими ударами и возникающее при определенных гидравлических условиях скорость кавитационного изнашивания в сотни раз выше скорости чисто коррозионного разрушения поверхностного слоя.  [c.44]

И наконец, в подавляющем большинстве случаев кавитация сопровождается разрушением поверхности, на которой возникают и некоторое время существуют кавитационные пузыри. Это разрушение, являющееся, пожалуй самым опасным послед-ствие.м кавитации, называют кавитационной эрозией. Как уже говорилось, интенсивность кавитационной эрозии может быть настолько высокой, что она может вызвать полный износ отдельных элементов гидравлической машины в чрезвычайно короткое время.  [c.25]

Общим требованием к гидравлическим машинам, работающим в условиях кавитационно-абразивного износа, является тщательная обработка поверхностей, обтекаемых потоком. Любые, даже самые небольшие неровности поверхности могут стать источником местных возмущений, которые, в свою очередь, могут вызвать разрушение поверхности. Это опасно, потому что кавитационная стойкость материалов, применяемых в гидромашиностроении, уменьшается с увеличением шероховатости поверхности.  [c.150]

Количественная информация о влиянии кавитационного разрушения направляющих поверхностей на эксплуатационные характеристики гидравлических машин практически отсутствует. Однако можно сделать некоторые выводы. Кавитационное разрушение поверхности может оказывать влияние на течение посредством двух различных механизмов. Во-первых, оно увеличивает шероховатость поверхности и поэтому может увеличить гидравлические потери вследствие поверхностного трения. Во-вторых, если разрушение происходит в критической области на направляющей поверхности, оно может изменить направление потока. Эффективность этих воздействий будет зависеть от нескольких факторов, наиболее очевидным из которых будет интенсивность разрушения. Второй фактор, который необходимо учитывать, относится к условиям эксплуатации, т. е. к степени развития кавитационных процессов в машине. Еще одним важным фактором является тип машины.  [c.624]

Процесс кавитационного разрушения, сущность которого подробно описана в работе [1], включает в себя, наряду с основным механическим воздействием среды (гидравлические удары жидкости о поверхность материала в момент смыкания пузырьков), также и химическое. Такое совместное воздействие приводит к особенно быстрому износу машин и их деталей.  [c.160]

Следует напомнить, что помимо чисто механического воздействия капель воды и энергии, освобождающейся при уничтожении пузырьков, в процессе кавитационно-эрозионного разрушения известную роль могут играть также и электрические явления. В 30-х годах текущего столетия было установлено, что в потоке жидкости возникает разность потенциалов, когда в одном месте имеется спокойный (ламинарный), а в другом — вихревой (турбулентный) характер течения. По-видимому, образующиеся при этом электростатические силы, наряду с электрическими разрядами, возникающими при непосредственном ударном действии капель жидкости, расширяют сферу кавитационно-эрозионного разрушения поверхности металла рабочих органов гидравлических машин.  [c.22]

В отечественной и зарубежной литературе имется достаточное количество данных относительно возможных форм и характера разрушения лопастных гидравлических машин [31, 35, 43, 62, П5]. Тем не менее, в качестве примера, приведем результаты обследования ряда гидромашин, подверженных интенсивному кавитационно-абразивному износу. Наблюдения за этими машинами входили в программу исследований, проводимых кафедрой использования водной энергии МИСИ им. В. В. Куйбышева на ряде насосных и гидроэлектрических станций.  [c.5]

В эксплуатации машин встречаются повреждения трущихся (рабочих) поверхностей деталей, вызванные действием газов или жидкостей HanpHiviep, эрозионное разрушение рабочих кромок золотников или кавитационное разрушение кранов гидравлических систем. Эти и некоторые другие виды повреждений не относятся к износу в обычно понимаемом смысле. Однако, руководствуясь практической целесообразностью, мы полагали важным наряду с износом рассмотреть и другие виды эксплуатационных повреждений. Исходя из этого разрушения рабочих поверхностей деталей и рабочих органов машин, связанные с процессом трения, классифицированы по видам, рассмотренным в следующих главах водородное изнашивание абразивное изнашивание окислительное изнашивание изнашивание вследствие пластической деформации изнашивание вследствие диспергирования изнашивание в результате выкрашивания вновь образуемых структур коррозионное, кавитационное, эрозионное изнашивание коррозионно-механическое изнашивание в сопряжениях изнашивание при схватывании и заедании поверхностей изнашивание при фреттинг-коррозии трещинообразование на поверхностях трения избирательный перенос.  [c.118]


Установка для обстрела образцов каплями. Во всех описанных выше установках эрозия развивалась под действием кавитации. Другой метод создания эрозии состоит в обстреле тела струями жидкости. Этот принцип применялся Аккеретом и Халлером [1, 14а] в первых опытах по определению эрозии металлов, используемых в гидравлических машинах. Они наблюдали разрушение материала, которое носило такой же характер, как и кавитационное разрушение ковшей турбины Пелтона, но происходило в условиях, когда трудно предположить существование низких давлений, при которых возникает кавитация. Был сделан вывод, что разрушение вызывается ударами о ковши турбины водяных капель, содержащихся во влажном паре.  [c.474]

Явление парообразования при пониженном давлении, обусловленном динамикой потока, и конденсация образовавшихся паров, сопровождаемая местными гидравлическими ударами, называется кавитацией. В кавитационной зоне, где непрерывно образуются и конденсируются пузырьки пара, наблюдается разрушение поверхности трубы. Работа гидравлических машин в кавитационном режиме сопровождается характерным шумом, а их напор, мощность и КПД резко падают. Явление кавитации возникает также при колебательных движениях тела в жидкости (гидровибраторы).  [c.40]

Опыт эксплуатации гидравлических машин, в частности, питательных насосов паровых котлов высокого давления, показывает, что качество воды влияет на кавитационную эрозию. Интенсивность кавитационного разрушения деталей насосов, сделанных из бронзы и углеродистых сталей, в значительной мере определяется химическим составом питательной воды. Наиболее резкое влияние оказывают такие вещества, как NaOH, NH3, СО2 и О2. При этом в присутствии щелочей износ уменьшается, а наличие СО2 приводит к его увеличению. Кислород в зависимости от его концентрации, скорости потока и свойств материа-  [c.37]

В десятилетие, предшествовавшее второй мировой войне, его исследования в основном относились к гидравлическим машинам, гидросооружениям и движению подводных тел, т. е. к областям, связанным с различными кавитационными явлениями и их влиянием на гидродинамику и разрушение конструкций. В 1941 —1942 гг. вследствие важности задач подводной баллистики профессору Кнэппу было поручено создание высокоскоростной гидродинамической трубы в Калифорнийском  [c.10]

Местная кавитация может происходить в переходных областях между неподвижными и движущимися поверхностями, даже если средние значения давления и скорости соответствуют бескавитационным условиям работы. В таких областях обычно возникают вторичные течения, и если кавитация все же имеет место, то можно ожидать ее возникновения и развития на поверхности раздела между вторичным и основным потоками. Происхождение некоторых в общем-то непонятных зон разрушения можно объяснить уносом схлопывающихся каверн вторичным потоком от места их возникновения к разрушаемой поверхности. Поскольку все эти возможные причины вызывают как общую, так и местную кавитацию, остается лишь довольствоваться тем соображением, что множество гидравлических машин, как насосов, так и турбин, работает в течение длительного времени с очень высоким к. п. д. без признаков существенного кавитационного воздействия на эксплуатационные характеристики и на процессы механического разрушения.  [c.629]

Явление кавитации наблюдается в трубопроводах, находящихся под пониженным давлением, оно наблюдается при работе быстроходных центробежных насосов, рабочих колес гидротурбин, лопастей винтов, у крыльев судов на подводных крыльях, и т. д. Кавитация оказывает вредное действие на работу машин и трубопроводов увеличиваются потери энергии на трение, понижается КПД, развиваются опасные вибрации и происходит так называемая кавитационная коррозия металлов, т. е. разрушение металла вследствие развивающихся многочисленных гидравлических ударов. Вначале с поверхности металла, подвергаемого кавитационной коррозии, выкрашиваются отдельные кусочки, а затем процесс быстро распространяется в глубь металла, охватывая своим разрушающим действием все большие участки. В результате металл становится рыхлым, губчатым и в конце концов совсем разрушается. Часто к кавитационной коррозии добавляется хн.М че-ская коррозия, и процесс разрушения металла еще больше ускоряется. Во избежание кавитационных явлений или с целью у мень-шения их отрицательного действия приходится ограничивать частоту вращения рабочих колес гидравлических машин, вингов судов, уменьшать скорость движения судов на подводных крыльях, изготовлять колеса, винты, крылья из антикоррозионных особопрочных материалов и придавать им специальные, порой весьма сложные, формы.  [c.47]

В некоторых случаях при очень быстром движении коррозионной среды или при сильном ударном механическом действии ее на металлическую поверхность наблюдается усиленное разрушение не только защитных пленок, но н самого металла, называемое кавитационной эрозией. Такой вид разрушения металла наблюдается у лопаток гидравлических турбин, лопаете пропеллерных мешалок, труб, втулок дизелей, быстро-ходшчх насосов, морских гребных винтов и т. п. Разрушения, вызываемые кавитационной эрозией, характеризуются появлением в металле трещин, мелких углублений, переходящих в раковины, и даже выкрашиванием частиц металла. С увеличением а1-рессивности среды кавитадиоппая устойчивость конструкционных металлов и сплавов понижается. Кавитационная устойчивость металлов и сплавов в значительной степени зависит не только от природы металла, но н от конфигурации отдельных узлов машин и аппаратов, их конструктивных особенностей, распределения скоростей потока жидкостей и др. Известно также, что повышение твердости металлов повышает их кавитационную стойкость. Этим объясняется, что для борьбы с таким видом разрушения обыч)ю применяют легированные стали специальных марок (аустенитные, аустенито-мартенситные стали и др.), твердость которых повышают путем специальной термической обработки.  [c.81]


Многие детали машин, работающие в контакте с быстро текущим потоком жидкостей (например, лопасти турби ны гидростанций, судовые гребные винты, лопасти насо сов, системы охлаждения различных агрегатов и т п), подвергаются кавитационной эрозии Под воздействием многократных и гидравлических ударов, локализованных в микрообъемах поверхности, происходит пластическая деформация, а затем и разрушение, эрозия металла Высокая способность марганцевого аустенита к де формационному упрочнению использована при разработ ке хромомарганцевых нестабильных аустенитных сталей с высокой кавитационной стойкостью И Н Богачев с сотрудниками показали, что наибольшим сопротивлением кавитационному воздействию обладают метастабильные аустенитные стали на хромомарганцевой основе, которые под влиянием внешней нагрузки претерпевают мартенсит ное превращение  [c.248]


Смотреть страницы где упоминается термин Кавитационное разрушение в гидравлических машинах : [c.4]    [c.445]   
Смотреть главы в:

Кавитация  -> Кавитационное разрушение в гидравлических машинах



ПОИСК



Гидравлическая машина

Жидкости, влияние свойств на разрушение в гидравлических машина кавитационному воздействию

Кавитационные разрушения элементов проточной части гидравлических машин

Разрушение в гидравлических машинах

Разрушение кавитационное

Шум кавитационный



© 2025 Mash-xxl.info Реклама на сайте