Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Микроскопическая картина разрушения

В этой главе рассмотрено поведение образцов из низко- и среднеуглеродистых сталей средней и низкой прочности, содержащих надрезы, а не острые трещины. Причина выбора этих материалов заключается в том, что в них легче прослеживается микроскопическая картина разрушения по сравнению с высокопрочными сталями. Выбор же образцов с надрезами обоснован тем, что в них распределение упруго-пластических напряжений, связанное с механизмами разрушения, изучено лучше, чем в образцах с трещинами. Анализ разрушения образцов с надрезом может быть использован для разделения механических и микроструктурных эффектов, а также для оценки значений вязкости, полученных другими методами.  [c.166]


Микроскопическая картина разрушения  [c.302]

Наряду с изучением кинетики развития макроскопических трещин в образцах, имеющих значительные размеры, большой интерес представляет также исследование микроскопической картины разрушения поликристаллических металлов под действием сильно адсорбционно-активных расплавов. В предыдущих главах при описании опытов с монокристаллами было показано, что эффект адсорбционного понижения прочности и пластичности в присутствии легкоплавких жидких металлов не связан сам по себе с наличием границ зерен в образцах.  [c.253]

МЯГКИМ напряженным состояниям. Согласно этой терминологии нередко подразделяют все напряженные состояния на три группы мягкие, жесткие и промежуточные. При мягких напряженных состояниях наблюдается разрушение срезом, при жестких — отрывом, при промежуточных — картина разрушения двойственная возможно как разрушение срезом, так и отрывом признаки того и другого обнаруживаются одновременно при микроскопическом исследовании излома лабораторного образца или реального изделия.  [c.144]

И промежуточные. При мягких напряженных состояниях наблюдается разрушение срезом, при жестких — отрывом, при промежуточных — картина разрушения двойственная возможно как разрушение срезом, так и отрывом признаки того и другого обнаруживаются одновременно при микроскопическом исследовании излома лабораторного образца или реального изделия.  [c.126]

Исходя из рассмотренной выше микроскопической картины растворения графита, нетрудно объяснить эффект температуры аустенитизации и поверхностно-активных примесей. При нагреве растворимость углерода в аустените возрастает, так что уменьшение когезии графита сопровождается увеличением адгезии графита к матрице. Вследствие этого восстановление контакта двух фаз путем разрушения графита реализуется чаще. Одновременно с нагревом увеличивается и роль газов. Присадка в чугун элементов, снижающих поверхностное натяжение матрицы и тем самым ослабляющих адгезию, должна препятствовать науглероживанию. К таким элементам следует отнести серу, присадка которой к ковкому чугуну тормозит растворение графита [340]. Задерживать растворение могут и примеси, увеличивающие силы связи в базисных плоскостях графита.  [c.96]

Переходя к изложению глав 3,4, посвященных исследованию пластической деформации и разрушения, следует отметить, что несмотря на значительные усилия, последовательная картина, позволяющая представить эти процессы на масштабах от микроскопического до макроскопического, до последнего времени отсутствует. Причина отставания в объяснении деформации и разрушения, кажущихся намного проще таких явлений как сверхпроводимость и сверхтекучесть, состоит в том, что для последних хорошо определены элементарные носители явления (конденсат куперовских пар и атомов Не ), тогда как для первых их представление приводит к весьма трудной задаче. Так, например, совершенно неприемлемо рассматривать процесс сверхпластичности как сверхтекучесть дефектов кристаллической среды. Это связано с многообразием механизмов сверхпластичности и отсутствием последовательной микроскопической картины, позволяющей описать носители деформации. Таким образом, требуется развить микроскопическое описание дефектов кристаллической структуры, которое позволило бы представить не только упругое поле, но и характер нарушения межатомных связей в области ядер. Такая программа реализована в 1 главы 3, 2 главы 4. Другая особенность реальной структуры состоит в том, что в ходе своей эволюции различные дефекты испытывают не только взаимодействие, но и попадают в иерархическое соподчинение друг к другу дислокации выстраиваются в малоугловые стенки, вакансии образуют дислокационные петли и т. д. Установление иерархической связи проявляется как качественная перестройка в поведении системы дефектов, которая выражается в появлении нового структурного уровня. Соответствующая теория изложена в 5 главы 3.  [c.11]


Технические критерии статического и усталостного разрушения при сложном напряженном состоянии, применяемые обычно в расчетах на прочность / — IV теории прочности и их обобщения [6]), имеют дело только с макроскопическими напряжениями и деформациями (I рода). Последние являются усредненными величинами, определяемыми для всего поликристаллического образца в целом, В частности, критерием разрушения по первой теории прочности служит равенство максимального главного напряжения его критическому значению Рр, равному сопротивлению разрушению при простом одноосном растяжении поликристаллического образца. Действительная картина разрушения сложнее. Задолго до полного разрушения всего образца, при напряжениях, значительно меньших разрушающего, в нем появляется множество микроскопических трещин, свидетельствующих о разрушении отдельных элементов структуры. Это явление легко понять, если учесть, что макроскопические напряжения являются средними по отношению к структурным или микроскопическим напряжениям (П рода), которые могут быть как меньше, так и значительно больше макроскопических напряжений в любом данном сечении тела. Максимальные из числа микроскопических растягивающих напряжений, достигая местной (локальной) прочности материала, приводят к образованию микротрещин. В связи с этим очевидно, что расчет по обычным техническим критериям прочности противоречив, поскольку в основу его положено предположение, по которому разрушение вызывается средними (макроскопическими), а не максимальными (из числа микроскопических) напряжениями. Дело обстоит точно так же, как если бы расчет на прочность пластинки с отверстием производился по номинальным напряжениям, без учета концентрации напряжений у отверстия и независимо от формы и размеров отверстия. В структуре технических материалов (сталей, чугунов, бетона и даже стекла) роль концентраторов напряжений принадлежит особенностям микроскопической структуры (кристаллитам, неметаллическим включе-50  [c.50]

Таким образом, состояния со сверхпроводящим током являются в принципе мета-стабильными. При соответствующей геометрии (т. е. для образцов, размеры которых малы в одном или нескольких пространственных направлениях) флуктуации, вызывающие разрушение сверхпроводящего тока, не должны быть невероятно большими, так что удается наблюдать затухание незатухающего тока . Очень интересная микроскопическая картина подобных процессов содержится в статье [23].  [c.365]

Ввиду уменьшения прочности смолы при повышенных температурах острые кромки пуансона проникают в материал при меньшей нагрузке изменяется картина образования и прорастания трещин. Часть микроскопических трещин, имеющихся в исходном материале, исчезает прорастание других тормозится, и они замыкаются по веществу пластичных примесей , зоны деформации уменьшаются. В результате этого разрушение в основном происходит по веществу пластичных составляющих и сопровождается перерезыванием волокон. Пластичные примеси в то же время обволакивают разрушенные объемы смолы и частицы наполнителя и противодействуют их выпадению.  [c.64]

Рассмотрение микроструктур ной картины показывает, что общей характерной чертой всех четырех типов разрушений является наличие негомогенной пластической деформации [59]. Все указанные типы разрушения определяются механизмами локализации пластической де рмации в областях микроскопических размеров.  [c.287]

Следует отметить, что в последние годы появилось очень большое число монографий по механике разрушения. Упомянем семитомный переводной труд энциклопедического характера Разрушение , монографии Морозова и Партона, Черепанова, ряд переводных сборников. Многие авторы понимают под механикой разрушения именно и только механику распространения трещины. Но в теории трещин предполагается, что материал остается упругим и не меняет своих свойств всюду, кроме окрестности конца трещины, которая или стягивается в точку в линейной механике, или рассматривается как пластическая область или область больших упругих деформаций. Такая точка зрения далеко не исчерпывает многообразия реальных процессов разрушения. При переменных нагрузках, например, уже после относительно небольшого числа циклов в материале появляются субмикроскопические трещины, которые растут и сливаются в макроскопические трещины, приводящие к видимому разрушению. Не вдаваясь в детали микроскопической картины, этот процесс можно представить как накопление поврежденности, характеризуемой некоторым параметром состояния. Кинетика изменения этого параметра должна быть включена в определяющие уравнения среды. Такая точка зрения лежит в основе того, что можно назвать механикш рассеянного разрушения. Соответствующая теория развивается применительно к усталости металлов и длительной прочности при высоких температурах.  [c.653]


Для плоских образцов внешняя картина разрушения несколько иная (рис. 1, б). Макроскопически путь трещины усталости совпадает с плоскостью действия максимальных нормальных напряжений, характер рентгенограммы от поверхности разрушения указывает на ее кристаллографические индексы 001 . (Зднако наблюдение за развитием пластической деформации на полированных гранях обра.зцов показало образование по меньшей мере двух систем устойчивых полос скольжения с последующиги развитием разрушения по ним (рис. 1, а, д). Таких ступенек на широкой грани образца можно обнаружить 150—200, т. е. микроскопически и в плоских образцах трещина следует по двум активным плоскостям скольжения 111 . Наблюдавшееся внешнее различие характера разрушения этих двух типов образцов объясняется различием их напряженных состояний (отсутствие градиента напряжений по длине цилиндрического и его наличие в плоском образце).  [c.149]

Наиболее распространенная точка зрения на макроскопическое разрушение исходит из признаков двойственного характера сопротивления разрушению каждый материал в зависимости от условий деформации может разрушаться от действия растягивающих (нормальных) напряжений (путем отрыва) или касательных путем поперечного или продольного среза или сдвига. Тот или иной вид разрушения определяется соотношением указанных напряжений и соотношением сопротивлений материала разрушению путем отрыва и среза при данных условиях нагружения (рис. 14.7). Однако природа разрушения, определяющаяся его микроскопической картиной, значительно еложнее и недостаточно изучена.  [c.203]

Как видно, процесс разрушения можно разбить на два этапа инкубационный период, когда внутри материала накапливаются микроскопические повреждения, и этап продвиженпя магистральной трещины, который заканчивается разрушением. Картина до чрезвычайности напоминает ту, которая наблюдается при длительном разрушении в условиях высоких температур, разница состоит в том, что субмикро- и микротрещины появляются в результате нопеременных пластических сдвигов в теле зерна, а не на границах зерен. Существуют теории накопления поврежден-ности при переменных нагрузках (Костюк), которые мы здесь не затрагиваем. Что касается роста трещины, то, как оказывается, скорость его определяется коэффициентом интенсивности напряжений, поэтому можно принять  [c.682]

В работах Гликмана и др. Л. 43 и 98] теория разрушающего действия кавитации получила дальнейшее развитие. В них приведены экспериментальные данные, полученные при исследовании поверхностного слоя образцов, подвергнутых кавитационному воздействию на магнитострикционном вибраторе. Анализом микроструктуры образцов, подвергнутых кавитации, установлено, что на первой стадии разрушения в поверхностном слое образца протекает пластическая деформация и происходит наклеп на глубину нескольких десятков микрон Ч Это происходит под действием многократно повторяющихся гидравлических ударов. С увеличением длительности кавитационного воздействия микродефор-мационная картина усиливается и, начиная с некоторого момента, наблюдается появление микроскопических трещин и выколов.  [c.63]

Таким образом, проведенные исследования показали, что при внедрении детали из стали Х18Н9Т в алюминиевые сплавы АД1 и АМгЗ при температуре 400° С пластическая деформация стали на глубину порядка 500 А в первом случае и 10 ООО А во втором случае обеспечивает схватывание металлов по всей поверхности контакта с образованием соединения, равнопрочного алюминиевому сплаву (разрушение сварных соединений происходит по основному материалу с меньшим пределом прочности). При снижении температуры или изменении других параметров процесса сварки прочность соединения уменьшается. Анализ дислокационной структуры поверхностного слоя показал, что декорирование наблюдается не только в макроскопическом масштабе, но и в микроскопическом на отдельных единичных дислокациях (рис, 3). При этом на электронно-микрогжопических картинах наблюдаются мельчайшие клубки второй фазы, которые светятся при темнопольном изображении и декорируют дислокацию лишь с одного конца, а именно с того, который выходит на свободную контактную поверхность раздела материалов. Второй же конец дислокаций, выходящий на другую поверхность, образовавтнуюся в результате приготовления пленки и утонения образна, не декорирован фазой.  [c.102]

Если трещина неподвижа, то она может лишь нарушить теплообмеп между разделенными ею частями тела. Но движущаяся трещина является мощным источником тепла. В самом деле, за единицу времени в ее вершину стекает поток энергии G I, который за вычетом обратимой поверхпостпой эиергпи 2 у/ затрачивается на пластические деформации и разрушение материала в малой зоне около вершины трещины. Теплообмен с окружающим материалом происходит медленно, ц поэтому концевая зона разогревается до весьма высоких температур. Картины изотерм у вершины трещины нормального разрыва, движущейся в стали со скоростью 1 м/с и 100 м/с (рис. 110, а и б), получены расчетным путем. Они говорят о крайне высоком разогреве в чрезвычайно малой зоне у вершины трещины (температура вдали от нее О °С). РГзмерения с помощью термопар показывают повышение температуры на 1 °С па расстоянии примерно в 1 мм и уже на 130 °С на расстоянии 30 мкм от вершины трещины, бегущей в стали со скоростью 10 м/с. Ближе к вершине трещины измерения этим методом произвести не удается. Оптические же методы свидетельствуют о разогреве на 230 °С в оргстекле (ПММА), на 1900° в стекле и па 4400° в кварце, разумеется, иа микроскопических расстояниях от вершины летящей трещины. Этот факт и является объяснением того, что столь сильный разогрев сам по себе не способен существенно оплавить окружающий вершину трещины материал п затормозить ее.  [c.178]


Специалисты в области трения и изнашивания много внимания уделяют исследованию характера микроскопического разрушения в поверхностном слое, который качественно отличается от характера объемного разрушения. Это отличие обусловлено в основном тем, что граница раздела поверхностного слоя с окружающей средой является сильнейшим источником воздействия на глубинные слои. Иллюстрацией фундаментального характера такого воздействия служат поверхностные эффекты П. А. Ребиндера, А. Ф. Иоффе, Роско и Крамера [12], связанные с физической адсорбцией или хемосорбцией активных компонентов среды на поверхности твердого тела (рис. 2.1). Поверхность качественно меняет картину распределения дислокаций в приповерхностном объеме твердого тела. Попытка связать изменения в распределении дислокаций с характером разрушения при изнашивании была сделана в работах Су [208, 209] он получил количественные соотношения для интенсивности изнашивания, выраженные через такие параметры дислокационной структуры, как плотность дислокаций и их вектор Бюргерса. Несмотря на то, что гипотеза отслаивания, сформулированная Су, подвергается вполне обоснованной критике из-за наличия спорных и неясных моментов, она дала новый импульс исследованиям дислокационной структуры разрушаемого поверхностного слоя, фрагментации этого слоя и образования частиц изнашивания [42, 89, 198]. Кроме того, эта гипотеза представляет собой один из возможных физических механизмов усталостного изнашивания, теория которого была сформулирована первоначально  [c.31]

Проведенные электронно-микроскопические исследования на просвет тонких фолы, приготовленных из зон разрушения испытанных образцов, показали, что в стали Х18Н10Т при больших амплитудах нагрузки = 28,3 кгс/мм ) обнаруживаются большие скопления мелкодисперсных выделений (рис. 12, о), сосредоточивающихся в местах расположения дефектов (дислокаций). Наряду с мелкодисперсными наблюдаются также крупные выделения карбидов кубической формы размером около 0,3 мкм, распределенные сравнительно равномерно по объему материала. Расчет микродифракционной картины показывает, что эти выделения являются карбидами типа МеазСе (рис. 12, б). Уменьшение амплитуды напряжения до < = 24 кгс/мм приводит к измельчению карбидов (рис. 1, б и 2, б) и их перераспределению. При этом их средний размер составляет около 0,02 мкм. Дальнейшее снижение амплитуды нагрузки до Од = 20 кгс/мм связано с увеличением времени испытания, которое в этом случае определяет степень соста-ренности материала, и в связи с этим наблюдается коагуляция карбидов и их перераспределение по границам зерен. Средний размер карбидов составлял при этом около 1 мкм (рис. 12, в, г).  [c.79]

Особенности разрушения поверхностей при трении качения связаны с наличием двух форм напряженно-деформируемого состояния. Состояние макроскопического слоя связано с условиями контактирования тел качения. Глубина и картина напряжений и деформаций определяются внешней нагрузкой, формой и размерами взаимодействующих тел. Разрушение этого слоя характеризуется усталостными механизмами. Состояние микроскопического слоя (порядка сотен ангстрем), обусловленное в основном проскальзыванием, зависит от соотношения нормальной и тангенциальной составляющей и физико-химических условий на поверхности металла. Разрушение этого слоя характеризуется механизмами механо-химического износа.  [c.307]


Смотреть страницы где упоминается термин Микроскопическая картина разрушения : [c.187]    [c.38]    [c.122]    [c.13]    [c.193]   
Смотреть главы в:

Синергетика конденсированной среды  -> Микроскопическая картина разрушения



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте