Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Насосы и гидромоторы с наклонными цилиндрами

Насосы (и гидромоторы) с аксиальным расположением цилиндров получили название пространственных или насосов с наклонным диском (шайбой).  [c.166]

При подаче давления управления к каналу золотник 19 переместится в нижнее положение, соединяя полость с дренажом, а другую полость со средней канавкой втулки. В этом случае подводимая к гидромотору рабочая жидкость поступит в полость и переместит поршень 16 в верхнее положение, уменьшая угол наклона блока цилиндров 8 и, тем самым, рабочий объем гидромотора. Частота вращения вала гидромотора при том же расходе рабочей жидкости увеличится пропорционально уменьшению рабочего объема. Винтом 20 ограничивается минимальный угол наклона блока цилиндров, а стержнем регулируется установочная длина пружины 12, определяющая минимальное давление управления. Наиболее предпочтительным считается, когда в схемах гидропривода применяются насосы и гидромоторы одного типоразмера.  [c.43]


С ПЛОСКИМ торцом диска, наклоненным к оси блока цилиндров. Гидромоторы с наклонной шайбой изготовляют, как правило, с постоянным рабочим объемом, а гидромоторы (насосы) с наклонным блоком — с постоянным или переменным рабочим объемом. Рабочий объем регулируют изменением угла наклона блока. Когда торцы блока цилиндров и шайбы параллельны, поршни не движутся в цилиндра.х и подача насоса прекраш,ается при наибольшем угле наклона — подача максимальная.  [c.72]

Наиболее приемлемой конструктивно-силовой схемой, по которой можно построить как насосы, так и гидромоторы универсального применения широкого ряда мощностей с очень высокими регулировочными качествами, является схема с наклонным блоком цилиндров. Однако насосы, построенные по этой силовой схеме имеют принципиальный недостаток необходимость отвода рабочей жидкости под давлением от подвижной качающейся люльки к неподвижным маслопроводам. Такое устройство несколько усложняет конструкцию, делает ее тяжелее и увеличивает габариты. Поэтому гидромашины, построенные по этой схеме, не всегда являются лучшими в тех или иных случаях применения. Однако проектирование и изготовление специальных гидромашин, наиболее удобных и выгодных для каждого случая применения, привело бы к созданию очень большого количества различных типов машин, сильно затруднило производство, снабжение запасными частями и эксплуатацию.  [c.41]

При нулевом угле наклона шайбы 3 насоса (нейтральное положение) гидромотор жестко связан с насосом через жидкость, запертую Б цилиндрах насоса, причем проскальзывание валов 4 насоса и 5 мотора определится объемными утечками жидкости, запертой в их цилиндрах.  [c.273]

Обратимые аксиально-поршневые гидромашины (насос-моторы) бывают двух видов с наклонным диском и с наклонным блоком. Конструкция первой из этих гидромашин показана на рис. 4.20. В гидромашинах с наклонным диском 1 блок цилиндров 3 не только вращается в корпусе насоса 4 соосно с валом 5, но поршни 2 в цилиндрах 3 совершают возвратно- поступательное движение. Варьирование передаточного числа достигается плавным изменением рабочего объема насоса. Поршни 2 упираются торцами в диск 1, который может поворачиваться вокруг оси 16. За половину оборота вала 5 Поршень 2 переместится в одну сторону на полный ход. Рабочая жидкость от гидромоторов 13 (по линии всасывания 6) входит в цилиндры 3. За следующую половину оборота вала 5 жидкость будет поршнями 2 вытолкнута в напорную магистраль 7 к гидромоторам 13. Подпиточный насос 10 восполняет утечки, собираемые в баке 14.  [c.172]

В следящем гидроприводе с объемным регулированием можно выделить силовую и управляющую части. Силовая часть включает в себя объемный насос с регулируемой подачей, вспомогательные устройства и гидродвигатель объемного типа. Наибольшее применение в следящих гидроприводах получили аксиально-поршневые насосы, подача которых регулируется изменением угла наклона блока цилиндров или изменением угла наклона шайбы. В качестве гидродвигателей обычно используются гидроцилиндры с поступательным движением выходного звена, моментные гидроцилиндры и аксиально-поршневые или радиально-поршневые гидромоторы. К вспомогательным устройствам относятся клапаны, фильтр, насос и бак системы подпитки рабочей жидкостью силовой части гидропривода.  [c.330]


В гидромашине с наклонным диском (см. рис. 10.12) поршень шарнирно опирается на наклонную поверхность, реакция которой дает осевую составляющую, уравновешивающую силу давления жидкости, и боковую составляющую, образующую момент. Консольное приложение боковой составляющей силы приводит к возникновению пятен контакта между поршнем и цилиндром. Контактные силы образуют момент в подвижной заделке поршня в цилиндре, уравновешивающий момент от внешней силы. Значительные контактные силы обусловливают и более существенные силы трения, поэтому механический КПД у гидромашин с наклонным блоком выше, чем у гидромашин с наклонным диском, что сказывается на работе гидромоторов, у которых частота вращения вала насоса должна изменяться в широких пределах. При малом значении п, когда скорость поршней мала, между цилиндрами и поршнями возникает граничное трение. Момент трения увеличивается, что вызывает неравномерность вращения гидро-  [c.255]

Гидромашины с наклонным блоком цилиндров имеют высокий КПД и хорошую жесткость характеристики. Однако регулируемые насосы этого типа велики по габаритным размерам. Нерегулируемые и регулируемые гидромоторы этого типа из-за малых механических потерь и утечек имеют наиболее широкий диапазон устойчивых частот вращения и высокого КПД, хотя и уступают по удобству встраивания гидромашинам с наклонным диском. Поэтому гидромашины с наклонным блоком цилиндров благодаря хорошей жесткости характеристик и значению КПД применяют в следящих гидроприводах высокой точности.  [c.259]

По описанной выше схеме с использованием всех основных узлов гидромотора ИМ промышленностью выпускаются регулируемые насосы типа ИД и ИР [4]. В указанных насосах блок цилиндров может изменять угол наклона к оси приводного вала, челе достигается регулирование удельного расхода насоса.  [c.82]

Когда диск 4 не имеет наклона, вал гидромотора не может изменить своего положения относительно насоса, так как жидкость запирается в цилиндрах плунжеров. Ротор насоса через шестерни 5 и б соединен с источником энергии.  [c.232]

Гидромоторы имеют сходное с насосом конструктивное устройство. Отличие состоит в некоторых особенностях распределительного узла, обеспечивающего работу механизма в качестве реверсивного гидромотора. Описанные выше насосы могут работать и как гидродвигатели, т.е. обратимы без изменений. Нерегулируемый гидромотор работает по схеме (рис. 18), при которой подвод к одному из отверстий в крышке 11 гидромотора рабочая жидкость через полукольцевой паз распределителя 25 поступает под поршни 16, полости которых в данный момент соединены с этим пазом. Под действием давления рабочей жидкости поршни выдвигаются из блока цилиндров и через шатун 6 поворачивают вал 1. Вместе с валом поворачивается и блок цилиндров с поршнями, в результате чего в работу постоянно вступают новые поршни, в то время как поршни, совершающие относительно блока цилиндров обратный ход через другой полукольцевой паз распределителя и второе отверстие в крышке 11, выталкивают рабочую жидкость из гидромотора, обеспечивая непрерывное вращение вала. Частота вращения вала зависит от расхода рабочей жидкости через гидромотор чем расход больше, тем выше частота вращения вала. При подводе рабочей жидкости к другому отверстию крышки 11 изменяется направление врашения вала гидромотора. Внутренние утечки, как и у насоса, отводятся через дренажное отверстие в корпусе. В целях увеличения производительности применяют регулируемые гидромоторы. Особенностью регулируемого гидромотора является то, что он оборудован специальным устройством - регулятором, позволяющим в процессе работы изменять угол наклона блока цилиндров относительно оси вала, вследствие чего изменяется ход поршней, а следовательно, — и рабочий объем гидромотора. Благодаря этому частоту вращения вала гидромотора можно регулировать не только изменением расхода рабочей жидкости через гидромотор, но и изменением его рабочего объема.  [c.41]

У нерегулируемого насоса блок цилиндров повернут так, что ось шипа составляет некоторый угол с осью вала (рис. 109,6). Поэтому при вращении блока поршни всасывают и нагнетают жидкость через каналы диска. При изменении величины и направления наклона блока цилиндров изменяются величина и направление потока рабочей жидкости. Если зафиксировать угол наклона блока цилиндров, то насос становится нерегулируемым. Описанная конструкция позволяет насосу работать и в режиме гидромотора.  [c.113]


Структурная схема силовой части гидропривода с объемным регулированием, построенная по уравнению (13.24), дана на рис. 13.5. Наличие замкнутого контура в структурной схеме силовой части гидропривода обусловлено собственной обратной связью с коэффициентом передачи /Сн- Эта обратная связь возникает в самом гидроприводе вследствие того, что при позиционной нагрузке поворот зала гидромотора сопровождается изменением перепада давления в его полостях и соответствующим изменением утечек и перетечек рабочей жидкости. В результате изменяется расход жидкости, обеспечивающей вращение вала гидромотора, что в структурной схеме условно приведено к изменению угла наклона блока цилиндров (шайбы) насоса.  [c.337]

На рис. 167 показана схема передачи гидродифференциального типа с аксиально-поршневым насосом и гидромотором с наклонным расположением цилиндров. Поршни несут на внешних концах плоские бронзовые подпятники (башмаки), которыми опираются на наклонную шайбу (см. также рис. 84). Распределение жидкости осуществляется с помощью плоских стальных золотников (см. рис. 89—90), рабочие поверхности которых покрыты баббитом (толщиной 0,3— 0,5 лел). Ротор изготовлен из стали 18ХНВА, в цилиндры запрессованы бронзовые втулки, в которых скользят г плунжеры. Насос питается от вспомогательного насоса подпитки жидкостью под давлением 7 кПсм .  [c.296]

В последние годы широкое распространение получили гидропередачи подвижных комплексов, состоящих из насосов с наклонным диском и гидромоторов с наклонным блоком цилиндров, представляющих собой оптимальное сочетание по встраиваемости, КПД и диапазону частот вращения выходного вала.  [c.259]

Гидромотор (рис- 6, а) состоит из ротора с наклонным блоком цилиндров 4. Ротор имеет вал 1, установленный на трех подшипниках и соединенный с блоком цилиндров двойным несиловым карданом 3. В цилиндрах блока расположены поршни 10, соединенные шатунами 11с фланцем вала 1. Пружины 2 и 5 предназначены для создания постоянных поджи.мающих усилий на кардан и ротор. Рабочая жидкость из всасывающей линии через крышку 6 и торцовый распределительный диск 9 поступает в подпоршневое пространство и затем выталкивается в нагнетательную линию. Внутренние утечки рабочей жидкости отводятся через центральный штуцер 8. Для ограничения давления в гидросистеме и насосах используется предохранительная клапанная коробка 7.  [c.20]

Обычно гидростатическая опора поршня аксиальнопоршневого насоса или гидромотора вращается вместе с блоком цилиндров, скользит по поверхности наклонного диска и воспринимает пульсирующ,ую осевую нагрузку.  [c.205]

Учитывая изложенные выше достоинства привода электровоза переменного тока с высокомоментными гидромоторами, Институт горного дела им. А. А. Скочинского и Александровский машиностроительный завод создали электровоз 10КРЗ [29]. Гидрокинематическая схема этого электровоза показана на рис. 158. Электрический двигатель ЭЛ посредством упругой муфты УУИ жестко связан с регулируемым насосом Я. Изменение производительности насоса происходит при перемещении рукоятки управления ЯУ, встроенной в механизм управления M.W. Движение рукоятки управления передается гидроусилителю насоса ГУ, который изменяет наклон блока цилиндров насоса.  [c.285]

Дифференцирование в рассматриваемой передаче мощности можно также осуществить чисто гидравлическим способом. Схема подобной передачи представлена на рис, 166. Насос 2 (регулируемая часть) и мотор 1 (нерегулируемая часть) либо вращаются как одйо целое, либо мотор вращается с меньшей или большей скоростью, чем насос. При нулевом угле наклона шайбы 3 насоса 2 (нейтральное положение) гидромотор жестко связывается с насосом через жидкость, запертую в их цилиндрах, причем проскальзывание валов насоса 4 и мотора 5 определится объемными утечками жидкости, запертой в цилиндрах.  [c.295]

В зависимости от назначения гидропривода вращательного движения в нем применяются либо гидромоторы, имеющие большую частоту вращения, но небольшой крутящий момент на выходном звене (низкомдментные гидромоторы), либо гидромоторы, имеющие большой крутящий момент при небольшой частоте вращения [высокомоментные гидромоторы). В качестве низкомомент-ных наиболее широко используют аксиально-поршневые гидромоторы, у которых оси поршней параллельны оси блока дилиндров или составляют с ней углы не более 45°. Благодаря такому расположению поршней ротор гидромотора имеет небольшие диаметр и момент инерции, что позволяет получить большую частоту вращения, высокую удельную мощность и хорошие динамические свойства. Аксиально-поршневые гидромоторы (как и аксиально-поршневые насосы) по конструкции бывают с наклонным блоком, когда движение выходного звена осуществляется благодаря наличию угла у между осью блока цилиндров и осью выходного звена (см. рис. 16.10), и с наклонным диском,. здесь движение выходного звена осуществляется благодаря связи или контакту поршней с плоским торцом диска, наклоненного к оси блока цилиндров под углом V (см. рис. 16.12).  [c.267]

Гидрообъемная коробка передач состоит из насосов и гидромото-ров, соединенных трубопроводами. Бесступенчатое изменение передаточного числа обеспечивается плавным изменением рабочего хэбъема насоса, а иногда и рабочих объемов гидромоторов. В неподвижном корпусе регулируемого насоса 3 (рис. 95) вращается соединенный валом 5 с маховиком двигателя блок цилиндров 2. Поршни 7 и 1, находящиеся в цилиндрах, упираются торцами в наклонную шайбу 8. За половину оборота вала 5 поршень 7 перемещается в положение, занимаемое поршнем 1. Рабочая жидкость из линии всасывания б (от гидромоторов) входит в цилиндр. За следующую половину оборота жидкость из цилиндра выталкивается в линию нагнетания 4 и поступает к гпдромоторам 12, установленным в ведущих колесах 11.  [c.152]


На рис. 13.1 дана схема силовой части гидропривода с объемным регулированием, содержащая две аксиально-поршневые гидромашины основной насос 2 и гидромотор 5. Вал насоса приводится во вращение от асинхронного электродвигателя /. Подача насоса регулируется изменением угла наклона блока цилиндров с помощью механизма 5, которым может быть также гидроусилитель, состоящий из гидроцилиндра и золотника. Насос двумя трубо- проводами 4 соединен с гидромотором, имеющим постоянный рабочий объем. Направление вращения вала гидромотора зависит от того, в какую сторону отклонен блок цилиндров насоса. Вал гидромотора через зубчатую передачу 6 соединен с управляемым объектом 7. Для восполнения утечек рабочей жидкости служит вспомогательный шестеренный насос 13, приводимый во вращение от асинхронного электродвигателя основного насоса. Если угол  [c.330]

И 7н угла поворота вала и гидромотора и угла наклона блока цилиндров (или шайбы) насоса, поэтому дальнейшее применение этого уравнения должно быть ограничено случаем 5 = /со. В правой части уравнения, в отличие от уравнения (13.24), содержится только один член, так как было принято, что Мпоз О и, следовательно, / поз = Кн = 0. Постоянные времени Т т и в уравнении (13.53) имеют такие же значения, как в уравнении (13.24), и определяются соотношениями (13.23) и (13.25), причем значение Тгп в данном случае точно соответствует соотношению (13..23) в связи с тем, что полагалось УИIp = Мтр = М оз == О, т. е. = О-  [c.345]

Определить КПД объемного гидропривода вращательного движения (рис. 13.1, а), насос которого развивает давление ц = 9,5 МПа, а аксиально-поршневой гидромотор имеет следующие параметры частота вращения п = 1100 мин- , диаметры цилиндров d = 16 мм, количество цилиндров г = 12, диаметр окружности центров цилиндров D = 82 мм, угол наклона диска у = 20°, механический КПД т)гм = 0,85. Характеристика насоса приведена на рис. 13.9. Напорная тидролиния имеет длину / = 6 м и диаметр = 21 мм, сливная — = 9 м и = 33 мм. Рабочая жидкость — масло индустриальное ИС-30 — имеет температуру 50 °С (р = 890 кг/м ). Цотери давления в местных сопротивлениях трубопроводов принять равными 90 % потерь давления на трение, а потерями давления во всасывающей гидролинии пренебречь.  [c.177]

В сл) ае увеличения момента нагрузки на валу гидромотора 1 за счет роста объемных потерь снизится угловая скорость вала и, следовательно, расход в сливной гидролинни. Перепад на дросселе 4 уменьшится, и р станет меньше Ро, в результате поршень цилиндра 3 под действием пружины сместится влево и увеличит наклон диска и подачу насоса, восстановив тем самым значение =(йз. Соответственно увеличение по сравнению с <оз приведет к росту давления Р] относительно Ро и уменьшению подачи насоса. Изменение -направления движения выходного звена гидропривода осуществляется двухпозиционным распределителем 5. Благодаря возможности регулирования проводимости дросселя 4 можно изменять коэффициент усиления системы стабилизации угловой скорости выходного вала.  [c.320]

Вторым примером привода такого рода служит привод станка ММ582 Московского завода внутришлифовальных станков. В этом станке в качестве двигателя также использован гидромотор (фиг. 14), который получает питание от лопастного насоса, нагнетающего масло под давлением 20—30 кг1см через распределительную панель управления, установленную на передней части станины станка. Гидромотор имеет неподвижный корпус (барабан) 6, в котором расточены одиннадцать цилиндрических отверстий, параллельных оси двигателя. В этих цилиндрических расточках перемещаются плунжеры 7. Правые концы этих плунжеров имеют сферическую форму и упираются в диск 8, наклонно насаженный на вал гидромотора 9. В те цилиндры, плунжеры которых находятся в левом положении, подводится масло под давлением, заставляющее их двигаться вправо, нажимать на наклонный диск 8 и через шарикоподшипник диска вращать вал гидромотора. Цилиндры тех плунжеров, которые находятся в правом положении, в это время соединены с линией выхода масла в резервуар. При вращении вала  [c.37]

Следящий гидропривод с объемным регулированием при осуществлении механического управления снабжается устройством, в котором сравниваются входной сигнал, задаваемый оператором, и сигнал обратной связи, пропорциональный углу поворота вала гидромотора или перемещениюллтока гидроцилиндра. Ошибке, выявленной при таком сравнении, должно соответствовать изменение угла наклона блока цилиндров или шайбы насоса, направленное на полное или частичное ее устранение.  [c.338]


Смотреть страницы где упоминается термин Насосы и гидромоторы с наклонными цилиндрами : [c.111]    [c.66]    [c.129]    [c.134]   
Смотреть главы в:

Машиностроительная гидравлика  -> Насосы и гидромоторы с наклонными цилиндрами



ПОИСК



Гидромотор

Дно наклонное

Наклон ПКЛ

Наклонность

Насосы и гидромоторы

Насосы с наклонными цилиндрами



© 2025 Mash-xxl.info Реклама на сайте