Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства квантового кинетического уравнения

Свойства квантового кинетического уравнения  [c.251]

Электрон-фононное взаимодействие в металлах. Кинетические свойства металлов в широком диапазоне температур определяются взаимодействием электронов проводимости с фононами кристаллической решетки. Рассмотрим еще один пример квантового кинетического уравнения — уравнение Блоха для электронов в металле.  [c.264]


В квазиклассическом приближении, когда все величины медленно изменяются на расстояниях порядка длины волны частицы (т. е. когда состояние частицы определяется координатой и импульсом, но ее импульс и энергия дискретны, частицы квантово неразличимы и удовлетворяют принципу Паули), можно пользоваться кинетическим уравнением Больцмана. Как мы увидим в следующей главе, учет квантовых свойств частиц в этом случае состоит в использовании для приближенного вычисления члена столкновений равновесной функции распределения Ферми — Дирака или Бозе — Эйнштейна.  [c.135]

В К. ф. исследуют также кинетич. свойства квантовых систем, что требует применения метода матрицы плотности (см., напр., Кинетическое уравнение основное).  [c.356]

Наш подход к теории неравновесных процессов основан на следующем свойстве макроскопических систем, тесно связанном с неустойчивостью классических фазовых траекторий X t) = q t) p t)) и квантовых состояний Ф( )) если нас интересует поведение системы на не слишком малых интервалах времени, то микроскопические детали ее начального состояния становятся несущественными и количество параметров, необходимых для описания системы, уменьшается. Эта идея сокращенного описания многочастичных систем была впервые высказана Боголюбовым и использована им для вывода кинетических уравнений из уравнения Лиувилля [7].  [c.79]

Идеальный газ — теоретическая модель газа, в которой не учитывается взаимодействие частиц газа (средняя кинетическая энергия частиц много больше энергии их взаимодействия). Различают классический л квантовый идеальный газ. Свойства классического идеального газа описываются законами классической физики — уравнением Клапейрона — Менделеева и его частными случаями законами Бойля — Мариетта и Гей-Люссака. Частицы классического идеального газа распределены по энергиям согласно распределению Больцмана.  [c.201]

Те элементы кинетической и молекулярной теории газов, термодинамики, физической химии, квантовой теории, волновой и статистической механики, которые имеют отношение к главной теме книги, также вкратце излагаются. Так, гл. 2 посвящена уравнениям пограничного слоя и их выводу на основе молекулярной теории газов. Глава 9 посвящена вопросам термодинамики газовых смесей и методам квантовой теории, спектроскопическому анализу и статистической механике в том их аспекте, в котором они применяются к определению термодинамических свойств и равновесных составов газовых смесей. Глава 10 посвящена переносным свойствам и роли межмолекулярных сил в их определении.  [c.8]


Перейдем теперь к получению кинетического описания системы, используя свойство ослабления корреляций для квантовых Я-систем. В уравнении (1.12) от времен (.1,0) перейдем ко временам ь, и >0 я применим к нему оператор огрубления (2.9). Это дает  [c.206]

Кинетическое уравнение для одночастичной матрицы плотности можно вывести из квантового уравнения Лиувилля различными способами. В частности, для этого достаточно построить статистический оператор g t), удовлетворяющий граничному условию ослабления корреляций в отдаленном прошлом, и выразить его через ква-зиравновесный статистический оператор Qq t) который, в свою очередь, зависит от одночастичной матрицы плотности. Такой метод оказывается особенно удобным для систем со слабым взаимодействием частиц, так как он позволяет построить интеграл столкновений, исходя только из общих свойств системы. Вывод квантовых кинетических уравнений с помощью этого метода дается в параграфе 4.1. Другой подход к квантовой кинетической теории основан на цепочке уравнений для 5-частичных матриц плотности которые аналогичны классическим 5-частичным функциям распределения. В случаях слабого взаимодействия между частицами или малой концентрации частиц, квантовую цепочку уравнений можно решить с помощью теории возмущений. Некоторые разновидности этого подхода изложены в книгах [35, 57]. В параграфах 4.2 и 4.3 мы рассмотрим квантовую цепочку уравнений с точки зрения метода неравновесного статистического оператора. Вначале мы построим групповое разложение интеграла столкновений для систем с малой плотностью, а затем обобщим метод на плотные квантовые системы.  [c.248]

В отличие от методов кинетических уравнений, приведенных выше, при более строгом анализе работы лазера необходимо учитывать, что под действием электромагнитного поля внутри его резонатора атомы активной среды начинают осциллировать подобно микродиполям. Эти диполи создают макроскопическую поляризацию Р, численно равную электрическому моменту единицы объема активной среды. Макроскопический дипольный момент действует как источник излучения, т. е. возбуждает собственное электромагнитное поле, приводящее к изменению электромагнитного поля в резонаторе. Таким образом, в результате взаимодействия электромагнитного поля и среды внутри резонатора устанавливается самосогласованное электромагнитное поле. Самосогласованную теорию лазеров можно строить двумя методами 1) полуклассическим — взаимодействие электромагнитного поля со средой описывается уравнениями классической электродинамики 2) квантово-механическим — взаимодействие описывается квантово-механическими уравнениями (в этих методах среда описывается уравнениями квантовой механики). Первый метод является менее строгим, например, с его помощью нельзя учесть шумы лазера, статистические свойства света и рассмотреть эффекты спонтанного излучения, определяющие условия в начале генерации лазеров. Однако в целом ряде задач этот метод является основным для качественного и количественного анализа работы лазера.  [c.22]

В самом деле, кинетическое описание допускает решение вида (95). С помощью кинетического уравнения (94) легко устанавливается, что л о, Ро удовлетворяют уравнению (93). Соответственно, это означает, что если координата х равнялась величине хо(0 в момент времени / и величине хо(/ + А ) в момент времени IЧ- А , ее скорость определяется как (хо(г + Аг) — хо(0)/Аг. Другими словами, для измерения скорости требуется дважды измерить координату в момент времени г -ь Аг и в момент времени г. Только будучи уверенным, что повторное измерение не нарушает состояния частицы при первом измерении, можно говорить о существовании скорости и, соответственно, об импульсе ро, который входит в уравнение динамики (93). Разумеется, измерение и взаимодействие частицы с прибором — это объективно протекающие процессы. Поэтому более правильным является утверждение, что уравнения динамики базируются на предположениях о том, что частица находится в постоянной информационной связи с внешним миром, и эта связь не нарушает динамических свойств частицы. Именно эти характеристики уместно связать с объектами макромира. Однако для частиц микромира, как показало открытие квантовой механики, исходные положения об одновременном существова-нии координаты и импульса частицы оказываются неверными.  [c.83]


Если на какой-то стадии эволюции звезды больше не выполняется уравнение (114), то эти качественные соображения теряют силу, потому что средняя кинетическая энергия одноатомной молекулы уже не равна 2 2)кТ. В нормальных твердых и жидких веществах группа частиц, двнж,ущпхся в ограниченной области пространства под действием сил притяжения, может перестать излучать и перестать сжиматься, когда становятся преобладающими квантовомеханмческие свойства системы. В тт. IV и V мы познакомимся с методами оценки характера и значениями тнх квантовых особенностей в различных условиях.  [c.305]

В этом разделе мы обсудим вопрос о том, какими общими свойствами должен обладать оператор измерения М. Прежде всего отметим, что в уравнении (145) оператор М 1/) входит в виде слагаемого наряду с кинетической энергией и полной энергией Нсо. Поэтому оператор М должен иметь размерность энергии, т.е. отношения Й//о, где о — некоторое характерное время измерения. Таким образом, вмешательство оператора М ф) в эволюцию квантовой частицы в общем случае должно возмущать не только волновую функцию, но и энергию этой частицы. Другими словами, измерение некоторого квантового объекта может сопровождаться обменом энергии с внешним окружением. Однако величина этой энергии может быть исчезающе мала, если либо измерение производится очень долго, либо коллапсирование происходит на столь широкие волновые пакеты, что соответствующим изменением энергии можно пренебречь. Например, при измерении физической величины I/, оператор которой коммутирует с гамильтонианом частицы, возмущения энергии не происходит и соответствующее измерение может происходить без разрушения стационарного состояния.  [c.156]


Смотреть страницы где упоминается термин Свойства квантового кинетического уравнения : [c.15]   
Смотреть главы в:

Равновесная и неравновесная статистическая механика Т.2  -> Свойства квантового кинетического уравнения



ПОИСК



Квантовое кинетическое уравнени

Кинетические уравнения

Шум квантовый



© 2025 Mash-xxl.info Реклама на сайте