Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Молекулярная структура и термодинамика

МОЛЕКУЛЯРНАЯ СТРУКТУРА И ТЕРМОДИНАМИКА 177  [c.177]

Молекулярная структура и термодинамика  [c.177]

МОЛЕКУЛЯРНАЯ СТРУКТУРА И ТЕРМОДИНАМИКА 179  [c.179]

МОЛЕКУЛЯРНАЯ СТРУКТУРА И ТЕРМОДИНАМИКА 181  [c.181]

Второй закон термодинамики, как и первый, основан на надежных экспериментальных данных, полученных в результате следующих наблюдений теплота самопроизвольно переходит из области высоких температур в область низких температур, газы самопроизвольно перетекают из области высокого давления в область низкого давления, два различных газа самопроизвольно смешиваются и теплота не может быть количественно превращена в работу в периодически действующей тепловой машине. Объяснение этих наблюдений основано на молекулярной структуре вещества. Однако экспериментальные наблюдения отражают поведение не отдельных молекул, а статистическое поведение большой группы молекул. Следовательно, второй закон термодинамики, который основан на наблюдении макроскопических свойств, по природе своей является статистическим и справедливость его ограничена законом статистики.  [c.189]


В термодинамике используется феноменологический метод исследования, при котором не вводится никаких предположений о молекулярном строении изучаемых тел. Применяемый в других областях физики статистический метод исходит из определенной молекулярной структуры тел и использует теорию вероятностей и математическую статистику для определения свойств совокупности микрочастиц. Простейшим примером взаимодействия обоих методов является определение термодинамических величин (давление, температура) в кинетической теории газов.  [c.5]

В случае необратимых процессов конечное состояние адиабатически изолированной системы, как мы убедились в 3-4, отличается от начального состояния большей величиной энтропии. Следовательно, каждое из состояний адиабатически изолированной системы при необратимом процессе неравноценно любому другому состоянию ее последующее состояние является как бы более вероятным, т. е. обладает большей вероятностью, чем предшествующее. При обратимых процессах конечное и начальное состояния соответствуют одному и тому же значению энтропии и являются в указанном смысле равноценными, т. е. равновероятными. С этой точки зрения энтропию системы можно считать мерой термодинамической вероятности данного состояния системы, а само содержание второго начала термодинамики рассматривать как утверждение о существовании меры этой термодинамической вероятности. Развивая эти общие соображения на основе представлений о молекулярной структуре вещества, можно, как это будет ясно из дальнейшего, более глубоко вскрыть физический смысл энтропии.  [c.99]

Допустим, что может быть осуществлен механизм, например поршень, который приводится в одностороннее движение флуктуациями плотности среды, находящейся в цилиндре под поршнем. При помощи такого рабочего механизма можно было бы извлекать из среды, находящейся в термодинамическом равновесии (т. е. имеющей повсюду одинаковую температуру), положительную работу. Легко убедиться, что в действительности осуществление подобного механизма невозможно. В самом деле, сам рабочий механизм, так же как и среда, подвержен в силу своей молекулярной структуры флуктуациям. Флуктуации среды и механизма независимы и будут происходить в различные моменты времени в разных направлениях, так что если под действием флуктуаций среды поршень сместился вверх, то через некоторое время из-за собственных флуктуаций он сместится вниз, в результате чего среднее по времени смещение поршня окажется равным нулю. Поэтому будет равна нулю и работа, произведенная поршнем. Следовательно, использовать флуктуации для создания вечного двигателя второго рода невозможно и утверждение второго начала термодинамики о неосуществимости вечного двигателя второго рода сохраняет свою силу и при статическом рассмотрении физических систем.  [c.106]


Различают два подхода к построению теорий в естественных и прикладных науках — полуэмпирический (феноменологический) и структурный. Первый подход основан на-обобщении результатов наблюдений и экспериментов и не ставит целью объяснение или полное описание существа явлений. Структурный подход состоит в разработке моделей, которые позволяют описать и объяснить явления исходя из внутренней структуры рассматриваемых объектов. Эти подходы тесно связаны между собой. Классическим примером служат соотношение между термодинамикой, дающей феноменологическое описание процессов преобразования энергии, и статистической физикой, основные разделы которой дают объяснение термодинамических явлений с учетом атомно-молекулярной структуры.  [c.16]

В самом деле, рабочий механизм, так же как и среда, подвержен в силу своей молекулярной структуры флюктуациям. Флюктуации среды и механизма независимы друг от друга и будут происходить в различные моменты времени в разных направлениях, так что если под воздействием флюктуации среды поршень сместился вверх, то через некоторое время из-за собственной флюктуации он сместится вниз, в результате чего среднее по времени смещение поршня окажется равным нулю. Поэтому будет равна нулю и работа, производимая поршнем. Следовательно, использовать флюктуации для осуществления вечного двигателя второго рода невозможно, и утверждение второго начала термодинамики о неосуществимости вечного двигателя второго рода сохраняет свою силу и при статистическом рассмотрении физических систем.  [c.88]

Основной целью монографии является обобщение работ по исследованию термодинамических свойств жидких металлических сплавов с точки зрения молекулярной теории растворов и получение информации о молекулярной структуре этих сплавов. Это отличает ее от других книг, посвященных термодинамике сплавов, в которых основной упор сделан на описание эксперимента и его термодинамическое обоснование.  [c.3]

Экспериментальная термодинамика растворов, к числу которых относятся гомогенные жидкие металлические сплавы, в большинстве случаев не может дать достаточно детальных сведений о молекулярной структуре, в то же время нельзя умалить ее роль в исследовании природы металлических сплавов. Наиболее правильно было бы вести параллельные исследования термодинамических свойств сплавов и их молекулярной структуры методами рентгенографии и электронографии, получившими развитие сравнительно недавно, так как во многих случаях необходимо выводы структурного анализа подкрепить данными о других свойствах сплавов. Термодинамические свойства жидких металлических сплавов связаны с их молекулярной структурой, поэтому, чтобы установить и исследовать эту связь, необходимо применить молекулярные теории растворов, а именно — статистическую теорию жидкости.  [c.3]

Логическим обобщением работ ло термодинамике сплавов и теории жидких растворов является метод анализа термодинамических свойств сплавов, изложенный в IV главе. В этой главе показано, что совместный анализ термодинамических свойств сплавов и данных структурного исследования дает ценную информацию о молекулярной структуре сплавов.  [c.4]

Статистическую физику можно разделить на статистическую термодинамику, изучающую физические системы в состоянии термодинамического равновесия, и статистическую кинетику, занимающуюся теорией процессов в этих физических системах. При этом в статистической физике явно вводится в рассмотрение молекулярная структура системы — в этом ее характерное отличие от термодинамики и феноменологической теории процессов.  [c.163]

Как известно, задача термодинамики — это изучение свойств тел в состоянии равновесия ( термодинамического равновесия ). Эта же задача ставится и в статистической термодинамике, которой будет посвящена эта глава книги. Только в статистической теории мы будем исходить из определенных представлений о строении тела — его молекулярной структуры, будем считать, что нам известны силы, действующие между его частицами, и взаимодействие его частиц с внешними телами. Задача статистической термодинамики — исходя из определенной молекулярной модели тела, найти свойства этого тела и их зависимость от температуры и внешних условий, в которых оно находится.  [c.181]


Статистическое толкование второго начала термодинамики. Любая термодинамическая система в отношении молекулярной структуры представляет собой совокупность очень большого числа молекул (порядка 10 и более). Если ввести понятие микросостояния как одного из возможных состояний системы, при котором молекулы распределены по энергии так, что Nj молекул имеют энергию каждая, причем сумма энергий всех молекул равна внутренней энергии системы и  [c.41]

В основе математического описания демпфирования лежит реология — наука о деформировании и течении материала. Одно из направлений, в котором развивается реология, связано с теорией микропроцессов и основано на дискретных моделях современной физики результаты исследований внутренней структуры материала используются здесь для описания внутренних процессов, протекающих в материале на уровне межатомных и молекулярных взаимодействий. Другое направление, которое наиболее распространено среди инженеров, связано с теорией макропроцессов и основывается на феноменологических аспектах физики явления. Макроскопический подход в реологии описывается уравнениями состояния, вытекающими из законов термодинамики необратимых процессов, которые можно записать в  [c.87]

Раскрыть глубже физическое содержание этого понятия,, оставаясь в рамках термодинамики, невозможно. Для этого-нужно выйти за пределы макроскопического рассмотрения и обратиться к анализу микрофизической структуры системы, анализу всех различных форм движения материи, которые присущи системе. Движения эти чрезвычайно разнообразны. В настоящее-время мы знаем, что на молекулярное движение частиц накладывается движение внутриатомное (известная модель этого движения уже построена) и внутриядерное (этот вид движения пока изучен весьма мало).  [c.25]

Как мы видели, термическая энергия, с которой мы постоянно сталкиваемся в жизни, обладает некоторыми особыми свойствами по сравнению с другими видами энергии. Эти особые свойства, характерные именно для термической энергии или тепла, привели к созданию и развитию самостоятельной науки, называемой термодинамикой, которая изучает процессы термической энергии, ее превращения в работу и другие виды энергии только с макроскопической точки зрения, без учета структуры материи. Анализ термических явлений на молекулярном уровне производится при статистическом рассмотрении кинетических и других свойств молекул (например в кинетической теории газов).  [c.62]

Выше мы вывели закон действующих масс, опираясь только на оба закона термодинамики и уравнение состояния идеального газа, т. е. чисто термодинамическим путем, независимо от каких-либо представлений о структуре реагентов, которые могли иметь молекулярное строение или представлять собой континуум. Однако закон действующих масс можно получить более наглядно, исходя из представлений молекулярно-кинетической теории, что мы сейчас и покажем.  [c.325]

Отношение между рассмотренным в данной главе подходом, связанным с осреднением более элементарных уравнений, п рассмотренным в гл. 1 феноменологическим подходом, аналогично известному отношению, имеющемуся между статистической физикой и механикой сплошной среды, между статистической физикой и термодинамикой, между молекулярно-кинетической теорией газа и газовой динамикой и т. д. В отличие от чисто феноменологического подхода нри осреднении микроуравнений для макроскопических параметров, таких, как макроскопические тензоры напряжений в фазах, величины, определяющие межфазные взаимодействия, получаются выражения, которые позволяют конкретнее представить их структуру и возможные способы их теоретического и экспериментального определения. С этой целью ниже рассмотрено получение уравнений сохранения массы, импульса, момента импульса и энергии для гетерогенных сред методом осреднения соответствующих уравнений нескольких однофазных сред с учетом граничных условий на межфазных поверхностях. При этом для упрощения рассматривается случай смеси двух фаз.  [c.52]

Развивая эти общие соображения на основе представлений о- молекулярной структуре вещества, можно более глубоко вскрыть физический смысл энт1ропии и получить само второе начало термодинамики уже не только как опытный закон, но как выражение статистических закономерностей в поведении сложных молекулярных систем, какими являются все окружающие нас реальные тела >.  [c.83]

ТЕРМОДИНАМИЧЕСКОЕ РАВНОВЕСИЕ -- состояние термодинамич. системы, когда ее параметры состояния не меняются с течением времени и когда в системе отсутствуют потоки любого тина. С микросконич. точки зрения такое состояние есть состояние динамического (или подвижного) равновесия (между отдельными частями системы возможен, напр., обмен частицами), так что равновесные значения термодинамич. параметров пе фиксированы строго во времени, а соответствуют статистическим средним величинам, около к-рых возможны флуктуации. В термодинамике полагают, что состояние Т. р. обладает след, свойствами если система, помещенная в неизменные внешние условия (напр., изолированная или находящаяся в термостате), достигла состояния Т. р., то она не может самопроизвольно выйти из этого состояния (свойство устойчивости, самоненарушаемости Т. р.) если система А находится в равновесии порознь с системами В и С, то две последние нри тепловом контакте также будут находиться в Т. р. друг с другом (свойство транзитивности Т. р.). Первое свойство ограничивает круг рассматриваемых в термодинамике систем теми, в к-рых флуктуации их характеристик несущественны и для описания к-рых можно отвлечься от молекулярной структуры вещества. Второе нозьо-ляет ввести общую макроскопич. характеристику систем, находящихся в равновесии — темп-ру, одииа-ковую для любой части равновесной системы.  [c.162]


Для понимания свойств наноструктурных пленок необходимо также знание атомной структуры границ зерен. Эта тема была предметом интенсивной дискуссии на протяжении последних лет. Интерес к этой проблеме дополнительно возрастает еще и потому, что значительное количество атомов в нанокристаллических материалах расположено на границах зерен. Отсюда возникает гипотеза о возможности существования нового состояния вещества. Согласно расчетам Глейтера с сотрудниками, выполненным с помощью методов молекулярной термодинамики, микроструктура нанокристаллических материалов состоит из кристаллических зерен и аморфных межзеренных прослоек однородной толщины. Отсюда авторы пришли к заключению, что нанокристалли-ческие материалы со случайной ориентировкой зерен содержат только высокоэнергетические границы раздела. В противоположность этому утверждению, другие исследователи установили, что границы раздела не являются неупорядоченными. Интересно также отметить, что теоретическая концепция конструирования нанокристаллических сверхтвердых материалов основана на предположении, что тонкие аморфные прослойки вокруг нанокристаллитов препятствуют образованию и размножению дислокаций [6]. Поэтому часто авторы приходят к умозрительному заключению, что нанокристаллиты полностью окружены тонкими аморф-  [c.480]

Применение макротермодинамического подхода при исследовании пространственных структур различных иерархических уровней живой материи (таких как, например, молекулярный, супрамолекулярный, ор-ганелльный, клеточный, организменный, популяционный и др.) позволило создать основы иерархической термодинамики [72,73].  [c.38]

Наиболее полная попытка феноменологического вывода определяющих соотношений (включая соотношения Стефана-Максвелла для многокомпонентной диффузии) для неидеальных многокомпонентных сплошных сред была предпринята в работе Колесниченко, Тирский, 1976). Определяющие соотношения, полученные в этой работе, по структуре тождественны аналогичным соотношениям, выведенным методами газовой кинетики в широко цитируемой до настоящего времени книге Гиршфельдера, Кертисса и Берда Гиршфельдер и др., 1961). Однако в этой книге приняты весьма неудачные определения коэффициентов многокомпонентной диффузии (как несимметричных по индексам величин) и коэффициентов термодиффузии, не согласующиеся с соотношениями взаимности Онзагера-Казимира в неравновесной термодинамике Де Гроот, Мазур, 1964 Дьярмати, 1974). Этот эмпирически установленный принцип взаимности (который может быть выведен также на основе методов статистической механики), носит фундаментальный характер и может быть назван четвертым законом термодинамики (третий закон о недостижимости абсолютного нуля температуры не обсуждается в этой книге). По этой причине соответствие коэффициентов молекулярного обмена принципу взаимности Онзагера-  [c.85]


Смотреть страницы где упоминается термин Молекулярная структура и термодинамика : [c.191]    [c.110]    [c.196]    [c.293]    [c.259]    [c.163]    [c.368]    [c.17]   
Смотреть главы в:

Равновесная и неравновесная статистическая механика Т.1  -> Молекулярная структура и термодинамика



ПОИСК



Молекулярный вес

Структура молекулярная

Термодинамика



© 2025 Mash-xxl.info Реклама на сайте