Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сингулярные интегральные уравнения в плоских задачах теории трещин

СИНГУЛЯРНЫЕ ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ В ПЛОСКИХ ЗАДАЧАХ ТЕОРИИ ТРЕЩИН  [c.5]

При исследовании напряженно-деформированного состояния тел с трещинами широкое применение нашел метод сингулярных интегральных уравнений. Он особенно удобен и эффективен при решении плоских задач теории упругости для тел сложной геометрии, содержаш,их включения, отверстия и трещины произвольной формы. Впервые [И, 137, 181] сингулярные интегральные уравнения использовались при исследовании распределения напряжений около прямолинейной трещины (или полосы пластичности) в некоторых классических областях (полуплоскость, полоса, бесконечная плоскость с круговым отверстием). Система произвольно ориентированных прямолинейных трещин изучалась в работах [21, 22, 70]. Рассматривался также случай криволинейных трещин в бесконечной плоскости [16, 40, 74, 92, 117]. В работах [94—96] основные граничные задачи для многосвязной области, содержащей изолированные криволинейные разрезы и отверстия произвольной формы, сведены к системе сингулярных интегральных уравнений по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. Эти результаты обобщены на случай, когда разрезы выходят на границу тела, а также соединяют отверстия между собой и (или) с внешней границей [97]. К настоящему времени появилось большое количество работ, в которых методом сингулярных интегральных уравнений изучаются плоские задачи теории трещин. Обзор этих исследований имеется в работах [5, 32, 45, 54, 70, 95, 100].  [c.5]


В начале данной главы получены сингулярные интегральные уравнения первой основной задачи плоской теории упругости для кольцевой пластины с трещинами, ограниченной внутренним круговым и произвольным внешним контурами. В параграфе 3 подробно рассмотрено круговое кольцо с краевыми радиальными трещинами. Ниже, пользуясь этим же приемом, изучим упругое равновесие эллиптической пластины с одной или двумя радиальными трещинами, выходящими на внутреннюю круговую границу, при действии сосредоточенных сил на замкнутых граничных контурах.  [c.200]

Используем изложенный в параграфе 2 подход к численному решению сингулярных интегральных уравнений плоской задачи теории трещин при наличии полос пластичности для исследования кругового кольца с краевыми трещинами.  [c.228]

В монографии рассмотрены методы решения широкого класса двумерных граничных задач математической теории трещин для изотропных тел. С помощью аппарата сингулярных интегральных уравнений решены новые плоские и анти-плоские задачи теории упругости для ограниченных и неограниченных тел, ослабленных криволинейными трещинами при действии внешней статической нагрузки и стационарного температурного поля. Изучены задачи об изгибе пластин и оболочек с криволинейными трещинами.  [c.2]

В данной книге на основе метода сингулярных интегральных уравнений предложен единый подход к решению плоских задач теории упругости, теплопроводности и термоупругости для тел, ослабленных системой криволинейных трещин. Этим же методом решаются задачи о продольном сдвиге цилиндрических тел с туннельными разрезами, а также задачи об изгибе пластин п пологих оболочек с трещинами.  [c.5]

В данной книге метод сингулярных интегральных уравнений применяется при решении плоских задач математической теории трещин, т. е, задач об упругом равновесии тонких пластин с трещинами при плоском напряженном состоянии или цилиндрических тел с туннельными разрезами, находящихся в условиях плоской деформации. Конструктивные элементы таких тел часто используются в технике.  [c.3]

Основные граничные плоские и антиплоские задачи теории упругости для многосвязной области, содержащей криволинейные разрезы и отверстия произвольной формы, сведены в работах [94—96] к системе сингулярных интегральных уравнений первого рода по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. При этом предполагалось, что контуры разрезов и отверстий не пересекаются между собой (см. параграф 3 данной главы). Краевые трещины рассматривались только в некоторых частных случаях граничного контура (окружность, прямая), когда удается построить модифицированные сингулярные интегральные уравнения, не содержащие искомых функций на этом контуре [70, 95]. В последнее время изучались также задачи в случае произвольной симметричной области с краевой трещиной, находящейся на оси упругой и геометрической симметрии [27, 53, 58, 104] (см. также параграфы 3—5 четвертой главы). Ниже, следуя работе [97], приводятся обобщения указанных выше результатов на общий случай многосвязной области с разрезами и отверстиями, когда разрезы одним или двумя концами могут выходить на внешнюю границу и контуры отверстий. Получены численные решения построенных интегральных уравнений при одноосном растяжении бесконечной плоскости с одним или двумя круговыми отверстиями, на контуры которых выходят радиальные трещины.  [c.33]


В данной главе изложен алгоритм [95, 102] расчета статической траектории распространения исходной внутренней трещины, базирующийся на решении плоской задачи теории упругости для тел с криволинейными разрезами. Приложенная к телу нагрузка и форма исходной трещины удовлетворяют некоторым условиям симметрии, так что оба ее конца развиваются одинаково. В этом случае траектория может быть построена без учета зависимости скорости роста трещины от коэффициента интенсивности напряжений в ее вершине. Аналогично может быть рассмотрено распространение краевой или полубесконечной трещины при действии любой несимметричной нагрузки. Изучены случаи развития исходной прямолинейной или двух сдвинутых параллельных трещин в бесконечной плоскости при действии растягивающих усилий на бесконечности или растягивающих сосредоточенных сил. Задачи на каждом этапе сводятся к сингулярному интегральному уравнению для гладких контуров, численное решение которого находится методом механических квадратур.  [c.41]

Как известно (см. первую главу), основные граничные задачи плоской теории упругости для тел с разрезами сводятся к системе сингулярных интегральных уравнений по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. В некоторых частных случаях граничных контуров 70, 95] (круговая граница, бесконечная прямолинейная граница, система коллинеарных разрезов) возможно понижение порядка этой системы уравнений, что позволяет более эффективно находить ее численное решение. В данной главе (см. также работы 59, 60]) получены модифицированные таким образом сингулярные интегральные уравнения, когда в рассматриваемой области имеется прямолинейная конечная или полубесконечная треш,ина. (Случай конечной прямолинейной треш,ины рассмотрен в работах [58, 104].) Указанный подход, когда граничное условие на прямолинейной треш,ине выполняется тождественно, позволяет не только эффективнее находить численное решение задачи, но и сравнительно просто изучать действие сосредоточенных сил и разрывных нагрузок на берегах трещины, а также рассматривать краевые разрезы. Решение задач для областей с прямолинейной тре-Ш.ИНОЙ представляет особый интерес в механике разрушения (определение /С-тарировочных зависимостей для опытных образцов с трещинами, развитие трещин около концентраторов напряжений).  [c.102]

Анализ разрушения металлических конструкций и многочисленные экспериментальные данные показывают, что в реальных условиях эксплуатации в нагруженном материале возле трещин могут возникать значительные пластические деформации, охватывающие области, сравнимые с характерными размерами концентратора напряжений (трещины, выреза, включения) или рассматриваемого тела. Описание процесса разрушения при значительных пластических деформациях требует решения соответствующей упругопластической задачи для тела с трещинами. Обстоятельный обзор таких исследований выполнен в работе [12]. Применение классических методов теории пластичности во многих случаях является малоэффективным и не всегда учитывает некоторые характерные особенности протекания процесса пластического деформирования, в частности локализацию деформаций в тонких слоях и полосах. В случае тонких пластин (плоское напряженное состояние) такие деформации локализуются в тонких слоях (полосах пластичности) на продолжении трещин и достаточно хорошо описываются с помощью б -модели, когда полосы пластичности моделируются скачками нормальных смещений [65. При плоской деформации зоны пластичности возле трещин во многих случаях также локализуются в тонких слоях (полосах скольжения), выходящих из вершины трещины под некоторыми углами к ней [45, 120, 159, 180]. Полосы скольжения при этом моделируются скачками касательных смещений. В результате решение упругопластической задачи для тела с трещинами сводится к решению упругой задачи для тела с кусочно-гладкими (ломаными) или ветвящимися разрезами (см. третью главу), на берегах которых заданы разрывные нагрузки. При этом длина зон пластичности и их ориентация заранее неизвестны и должны быть определены в процессе решения задачи. Для таких исследований может быть успешно применен метод сингулярных интегральных уравнений, развитый в предыдущих главах, что и проиллюстрировано на конкретных примерах.  [c.219]


К сингулярным интегральным уравнениям (IX.74) и (IX.77) в общем случае геометрии оболочки и формы разрезов могут быть применены методы численного решения, xopoujo развитые в плоской задаче теории упругости для тел с трещинами (см. параграф 2 главы II). Дополнительные трудности возникают при вычисле1П1и фундаментального решения Ф (х, у) и его производных, через которые выражаются ядра уравнений. В дальнейшем на примерах кругового отверстия, прямолинейной и дугообразной треид.ин будет рассмотрен асимптотический метод решения уравнений (IX.74) при малых значениях параметра Я, характеризующего пологость обо лочки.  [c.287]


Смотреть страницы где упоминается термин Сингулярные интегральные уравнения в плоских задачах теории трещин : [c.5]    [c.240]    [c.241]   
Смотреть главы в:

Численный анализ в плоских задачах теории трещин  -> Сингулярные интегральные уравнения в плоских задачах теории трещин



ПОИСК



Задача о трещине

Интегральное уравнение теории

Плоская задача

Плоские задачи о трещине

Сингулярность

Сингулярные интегральные уравнения задачи

Теории Задача плоская

Теории Уравнения

Теория трещин

Уравнение задачи (А) интегрально

Уравнение задачи (А) интегрально Si) интегральное

Уравнения для плоских задач

Уравнения интегральные



© 2025 Mash-xxl.info Реклама на сайте