Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линейная задача. Безмоментное состояние

НЕОДНОРОДНОЕ ПО ДЛИНЕ КРУЧЕНИЕ 1. Линейная задача. Безмоментное состояние  [c.236]

ЛИНЕЙНАЯ ЗАДАЧА, БЕЗМОМЕНТНОЕ СОСТОЯНИЕ  [c.237]

В качестве числового примера использования линейной краевой задачи (3.60), (3.61) рассмотрим местную потерю устойчивости свободно опертой по торцам круговой цилиндрической многослойной оболочки, подверженной действию равномерно распределенной по контуру сжимающей силы Nq. Под действием этой сипы в оболочке в докритическом безмоментном состоянии возникнут удельные усилия, равные  [c.64]


Устойчивость оболочек. Для достаточно толстых оболочек возможна такая же постановка задачи устойчивости, как и для стержней. Если решать задачу о росте прогиба со временем в геометрически линейной постановке, то оказывается, что прогиб обращается в бесконечность при конечном значении времени, которое принимается за критическое. Таким способом Ю. М. Волчков (1965) рассмотрел выпучивание сжатой цилиндрической оболочки конечной длины, опертой по краям, и полубесконечной оболочки с опертым торцом. Ю. М. Волчков и Ю. В. Немировский (1966) распространили метод на оболочки, подкрепленные стрингерами и шпангоутами. Особенность этих задач состоит в том, что вследствие условий закрепления в оболочке нет начального безмоментного состояния и при анализе нет необходимости вводить начальный прогиб.  [c.148]

На примере цилиндрической оболочки мы убедились в том, что при плавно меняющейся нагрузке в большей части оболочки можно пренебречь изгибом и напряжениями от изгибающих моментов но сравнению с равномерно распределенными по толщине напряжениями от усилий Гар. Моментное напряженное состояние реализуется только в зоне краевого эффекта, протяженность кото-рой оценивается характерным линейным размером к = УНк. Для оболочки положительной гауссовой кривизны этот результат носит совершенно общий характер, схема расчета таких оболочек строится следующим образом. Сначала находится усилие в оболочке, которую представляют как тонкую, нерастяжимую мембрану, совершенно не сопротивляющуюся изгибу. Эта задача решается с помощью одних только уравнений статики и, собственно говоря, не относится к теории упругости. Соответствующая теория называется безмоментной теорией оболочек. Решение, найденное по безмоментной теории, как правило, не позволяет удовлетворить всем граничным условиям, поэтому вблизи границы рассматривается краевой эффект, связанный с изгибом. Ввиду малости области краевого эффекта, уравнения теории оболочек для этой области принимают относительно простую форму. Для вывода уравнений безмоментной теории нам понадобятся некоторые сведения из теории поверхностей, которые предполагаются известными и сообщаются для справки.  [c.423]

Анализ нелинейной безмоментной теории и краевого эффекта проведен в гл. 5. Установлено, что при линейном и нелинейном подходе системы уравнений, описьшающие безмоментное осесимметричное напряженное состояние и краевой эффект, имеют ргйный порядок. При линейном подходе безмоментное состояние описывается системой второго порядка, а краевой эффект — системой четвертого порядка. При нелинейном подходе, наоборот, безмоментное состояние описывается уравнением четвертого порядка, а краевой эффект — уравнением второго порядка. Цель данного параграфа проследить промежуточные этапы перехода от линейной постановки задачи к нелинейной при росте уровня нагружения (см. также [93]). В качестве примера рассмотрим растяжение полусферического купола под действием внутреннего давления.  [c.365]


Излагаются методы эффективного построения этих решений и много внимания уделяется обстоятельствам, при которых решения существуют и единственны. Эти вопросы в безмоментной теории решаются нетривиально. Общая линейная краевая задача моментной теории оболочек единообразна она заключается в интегрировании эллиптической системы уравнений с выполнением в каждой точке края (или краев, если область многосвязна) четырех граничных условий. Она всегда имеет единственное решение. Однако при переходе к описанной выше безмоментной краевой задаче картина становится весьма пестрой, так как тип уравнений, подлежащих интегрированию, может оказаться любым (эллиптическим, гиперболическим и параболическим). Различными по своему характеру оказываются и краевые задачи безмоментной теории это могут быть задачи типа Дирихле, задачи типа Коши, а также задачи, не предусмотренные существующей классификацией. К тому же может существовать несоответствие между типом краевой задачи безмоментной теории и типом уравнений, для которых ее надо решать. Например, задачу Дирихле иногда приходится решать для гиперболического уравнения, а задачу Коши — для эллиптического. Все это приводит к тому, что теоремы существования и единственности для краевых задач безмоментной теории формулируются далеко не единообразно и в них вопрос не всегда решается положительно. Однако такая ситуация не свидетельствует о принципиальной порочности самой идеи выделения в самостоятельное рассмотрение краевой задачи безмоментной теории. Каждая из описанных выше странностей краевых задач безмоментной теории свидетельствует об определенных особенностях искомого напряженно-деформированного состояния оболочки. Для широкого класса задач это будет показано в части IV.  [c.174]

Напомним (см., налример, [15]), что в линейной теории при рассмотрении тонкой оболочки как трехмерного упругого тела напряженное состояние складывается из внутреннего напряженного состояния и пограничного слоя. Последний локализуется в окрестности края оболочки на расстоянии порядка ее толщины Л и не описывается двухмерными уравнениями. Показатель изменяемости пограничного слоя t = 1. Внутреннее состояние с погрешностью, неограниченно убывающей вместе с толпщной оболочки, может быть описано двухмерными уравнениями теории оболочек. Во многих случаях (в частности, для рассматриваемой задачи о растяжении полусферы внутренним давлением) внутреннее состояние складывается из безмоментного состояния с изменяемостью = О и простого краевого эффекта с изменяемостью t = 1/2, локализующегося в окрестности края s = S2 оболочки и приближенно описываемого уравнением  [c.366]

Малые отклонения от основного состояния. При рассмотрении геометрически линейных задач о стержнях, пластинах и оболочках естественно рассматривать безмоментное напряженное состояние как основное и линеаризировать уравнения ползучести около основного состояния. Рассматривая задачу о сжатом стержне из материала, следующего закону ползучести с упрочнением, Ю. Н. Работнов и С. А. Шестериков (1956) установили, что вариации напряжений и деформаций связаны уравнением типа (5.2), в котором константы заменяются известными функциями времени. Прогиб представляет Ьобою функцию координаты, умноженную на функцию времени т ( ). Если стержень был первоначально прямой и в некоторый момент времени i ему сообщено возмущение, например приложена поперечная нагрузка, то можно указать такое критическое  [c.146]

В других случаях, использование в качестве исходной для линейного расчета конфигурации оболочки, нагруженной давлением, не позволяет выявить существенные особенности задачи. Тогда целесообразно использовать другой способ получения линеаризованных уравнений, предложенный Л. И. Балабухом и В. И. Усюкиным [52]. Отличие этого метода от рассмотренного выше состоит в том, что за исходное состояние оболочки принимается не действительное ее напряженнотдеформированное состояние под действием предварительной нагрузки, а другое, соответствующее какой-либо иной ее конфигурации (напомним, что при заданной конфигурации безмоментной оболочки внутренние силы определяются из уравнений статики).  [c.379]


Нелинейная трактовка поведения оболочки при деформировании помогла глубже понять физику явления потери устойчивости. К сожалению, увлечение нелинейными задачами сопровождалось пренебрежением к развитию линейной теории. Лишь в последние годы наметился явный возврат к решениям задач устойчивости в линейной постановке. Опубликован ряд работ [7.8, 7.26, 7.28,-7.46, 7.47], в которых обсуждается влияние различных граничных условий. В этих работах, согласно классической постановке, исходное состояние считается безмоментным. При таком нодходе удовлетворительного, с точки зрения согласования с экспериментом, результата получить не удалось. Только в случае осевого сжатия свободно опертых круговых цилиндрических оболочек, когда на краях принималось равным нулю касательное усилие, критическая нагрузка получилась примерно вдвое меньше классической. Но подобный вариант граничных условий в чистом виде в реальных закреплениях оболочек не встречается, так что отмеченный эффект может в какой-то мере проявляться только за счет податливости закреплений.  [c.11]


Смотреть страницы где упоминается термин Линейная задача. Безмоментное состояние : [c.328]    [c.297]    [c.268]   
Смотреть главы в:

Устройство оболочек  -> Линейная задача. Безмоментное состояние



ПОИСК



Линейная задача

Состояние линейное



© 2025 Mash-xxl.info Реклама на сайте