Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ЗАДАЧИ ТЕОРИИ ТЕРМОУПРУГОСТИ О ТРЕЩИНАХ

Задачи теории термоупругости о трещинах Ю. Ито  [c.18]

ГЛАВА И. ЗАДАЧИ ТЕОРИИ ТЕРМОУПРУГОСТИ О ТРЕЩИНАХ.......................................................................  [c.458]

ЗАДАЧИ ТЕОРИИ ТЕРМОУПРУГОСТИ О ТРЕЩИНАХ  [c.736]

В данной книге на основе метода сингулярных интегральных уравнений предложен единый подход к решению плоских задач теории упругости, теплопроводности и термоупругости для тел, ослабленных системой криволинейных трещин. Этим же методом решаются задачи о продольном сдвиге цилиндрических тел с туннельными разрезами, а также задачи об изгибе пластин п пологих оболочек с трещинами.  [c.5]


Настоящая монография посвящена исследованию распределения напряжений около трещин в двумерных телах. На основе метода сингулярных интегральных уравнений рассмотрены задачи теории упругости и термоупругости, а также задачи об изгибе пластин и пологих оболочек для однородных изотропных областей, ослабленных криволинейными трещинами. В предыдущей монографии автора Распределение напрялсений около трещин в пластинах и оболочках ( Наукова думка , 1976 соавторы В. В. Панасюк и А. П. Дацышин) предложен метод решения таких задач для системы произвольно ориентированных прямолинейных трещин. Здесь этот метод обобщен на случай гладких н кусочно-гладких криволинейных разрезов-трещин, что дало возможность единым подходом рассмотреть в общей постановке основные граничные задачи для конечных или бесконечных многосвязных областей, ослабленных отвер-стиями н трещинами произвольной формы. По каждому классу задач приведены примеры их решеии51 предложен-  [c.3]

Таким образом, между интегральными уравнениями плоских, задач теории упругости и термоупругости для системы коллинеар-ных термоизолированных трещин, нагруженных несамоуравнове-шенными усилиями, имеется полная аналогия.  [c.233]

От известных книг монографию Новацкого отличает прежде всего то, что автор положил в основу связанную задачу термоупругости, а классическую теорию упругости и теорию температурных напряжений изложил как ее частные случаи. Характерно также, что автор уделил очень большое внимание динамическим задачам теории упругости впервые в книге такого рода приводится математическое описание континуума Коссера. Монография содержит и ряд оригинальных результатов, полученных автором (кручение бруса, имеющего трещины, распространение термоупругих волн, несимметричная упругость и др.).  [c.5]

ОТ Прежнего, так как в нем используются преимущества решений, развитых ранее только для аналитических фуикний. Дано подробное изложение новых решений для эллиптического отверстия, которые важны в современной механике разрушения (теории трещин). Исследование осесимметричных напряжений в главе 12 упрощено, и добавлены новые разделы, в которых более приближенный анализ случая разрезанного кольца как одного витка спиральной пружины заменен более точной теорией. В силу значительного роста приложений, например в ядерной энергетике, глава 13 Температурные напрям ения расширена за счет включения термоупругой теоремы взаимности и полученных из нее нескольких полезных результатов. Кроме того, исследование двумерных задач дополнено двумя заключительными параграфами, последний из которых устанавливает взаимосвязь двумерных задач термоупругости с комплексными потенциалами и методами Н. И. Мусхелишвили из главы 6, В главе 14, посвященной распространению волн, перестройка изложения придала больше значения основам трехмерной теории. Добавлено также решение для действия взрывного давления в сферической полости. Приложение, посвященное численно.му методу конечных разностей, включает пример использования ЭВМ для решения задачи с большим числом неизвестных.  [c.13]


Было предложено несколько остроумных способов решения этой задачи. Советские физики А.Ф. Иоффе и Я. И. Френкель предложили сперва переохлаждать шар (из каменной соли) до температуры, значительно более низкой, чем температура окружающей атмосферы, а затем нагревать его в воздухе до комнатной температуры ). Более высокая температура на поверхности вызывает расширение в материале шара. Термические напряжения в нем сводятся к сжимающим напряжениям в окружном направлении в его внешних частях, из условия же равновесия следует, что центральная часть шара должна быть растянута. Таким образом, в центре шара создается состояние равномерного всестороннего растяжения. Нетрудно найти термоупругие напряжения в шаре в период процесса теплообмена. Эти напряжения определяются центрально симметричным распределением температуры (задача, рассмотренная в классической теории теплопроводности для сферы). Я. И. Френкель определил максимальные значения термических растягивающих напряжений в центре шара и установил, что в каменной соли, переохлажденной в жидком воздухе, они должны достигнуть высоких значений, которые никогда не наблюдались при испытаниях этого материала на простое растяжение или изгиб (шары из каменной соли при повторном нагреве не дают трещин). Найденные таким путем очень высокие значения сопротивления трехосному растяжению во внутренней точке тела для такого слабого материала, как каменная соль, следует считать сомнительными. Внешние части шара из каменной соли, находящиеся в основном под действиел двухосного сжатия, должны получить пластические деформации, так как этот материал обладает низким пределом текучести. Поскольку высокие значения растягивающих напряжений были вычислены на основании теории упругости, влияние пластической деформации внешних слоев шара, приводящее к уменьшению сжимающих напряжений во внешней оболочке, не было учтено, вследствие чего величина растягивающих напряжений в центральной части оказалась значительно завышенной.  [c.201]


Смотреть главы в:

Справочник по коэффициентам интенсивности напряжений Том 1,2  -> ЗАДАЧИ ТЕОРИИ ТЕРМОУПРУГОСТИ О ТРЕЩИНАХ



ПОИСК



Задача о трещине

Задачи термоупругости

Теория термоупругости

Теория трещин

Термоупругие задачи

Термоупругость



© 2025 Mash-xxl.info Реклама на сайте