Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Составляющие , Н и F в расплаве

Другим примером может служить поведение никеля, погруженного в расплав буры на глубину 3 мм при температуре 780 °С и давлении Oj 0,1 МПа (рис. 10.6). В этих условиях скорость окисления низка вследствие ограниченного поступления кислорода из газовой фазы. При контакте никеля с платиновой или серебряной сеткой, выступающей над поверхностью расплава, коррозия никеля сильно ускоряется (в 35—175 раз при продолжительности опыта 14). При этом никель корродирует быстрее, чем в атмосфере чистого кислорода при той же температуре, так как здесь не образуется защитная окалина NiO. Вместо этого ионы Ni + растворяются в буре, а платина работает как кислородный электрод. В этой ситуации разность потенциалов между Pt и Ni составляет 0,7 В. Добавление в расплав буры 1 % FeO еще более ускоряет процесс окисления (возможно, ионы Fe + у поверхности электролита окисляются кислородом до Ре +, а ионы Ре + снова восстанавливаются либо на катоде, либо в процессе работы локальных элементов на никелевом аноде).  [c.199]


Заготовку расплавляли и расплав доводили до 1610°С, выдержка при этой температуре составляла 1 - 2 мин, аргон подавали при давлении Р = 30 - 40 мм рт.ст., металл перегревали до 1750°С, выдерживали 20 мин и охлаждали до 1660°С, вакуум в камере - до  [c.456]

Большое значение имеет температура, при которой начинают повышаться давление и скорость его нарастания. Обычно интервал переохлаждений, в котором количество возникающих зародышей в расплаве возрастает от единиц до очень большого числа (интервал Гм—Т ), составляет для металлов несколько градусов. Это относится как к самопроизвольному зарождению центров, кристаллизации, так и к их зарождению на примесях. Поэтому, если в расплаве достигнуто переохлаждение Д7м = Гпл—7 м, при котором практически начинают возникать центры кристаллизации, или если температура расплава близка к Гм, а АГм мало, то увеличение переохлаждения на несколько градусов при помощи наложения давления на кристаллизующийся расплав может существенно увеличить число центров кристаллизации, приводя к измельчению структуры литой заготовки.  [c.25]

В том же направлении ухудшается растекание расплава по подложке. Лучшее растекание в вакууме при 1100 °С имеет расплав с хромом. Краевой угол растекания составляет около 45°. Такое значение краевого угла растекания у расплава с карбидом хрома и нихромом достигается при более высокой температуре (1150—1200 °С).  [c.115]

Стекло, выдержанное 2 ч в градиентной печи, до 480 °С сохраняет свою первоначальную прозрачность, выше 480 °С и до 550 °С покрывается кристаллической коркой. Температурная область объемной мелкодисперсной кристаллизации стекла составляет 550—760 °С, а в области температур 760—870 °С происходит грубая кристаллизация стекла. Выше 870 °С расплав стекла гладко растекается по лодочке.  [c.124]

Одним из видов нанесения защитных покрытий на детали из высокотемпературных материалов служит метод окунания в расплав [1]. Такой метод используется для кратковременной защиты покрытий при горячей обработке давлением молибдена и ниобия. Для нанесения качественного покрытия необходимо определение оптимальных температур и состава расплава, при которых происходит удовлетворительное смачивание твердых металлов расплавом. Смачивание твердых молибдена и ниобия расплавами на основе алюминия исследовали на установке, позволяющей раздельный нагрев твердой и жидкой фаз [2]. Опыты проводили в среде гелия, температуру фиксировали платина — платинородиевой термопарой. В качестве объектов исследования использовали молибден и ниобий после электронно-лучевой плавки, алюминий чистоты 99,98% и порошки легирующих компонентов кремния, титана и хрома марки ч. д. а. Для экспериментов готовили навески одинаковой массы 500 мг. При достижении твердой подложкой температуры опыта навеска плавилась и соприкасалась с подложкой, время контакта при заданной температуре составляло 2 мин, по истечении которого каплю фотографировали аппаратом Зенит-С на  [c.55]


Полученные данные по скорости осаждения гранул в зависимости от диаметра, состава расплавленной соли и температуры не согласуются с рассчитанными. Во-первых, характер изменения скорости падения от диаметра гранулы не совпадает с характером изменения теоретической скорости во-вторых, абсолютные значения полученных скоростей осаждения в среднем на 30% ниже рассчитанных. На основании этих данных было сделано предположение о том, что при входе гранулы в расплав на ее поверхности образуется кристаллическая оболочка (настыль). Она сохраняется довольно значительное время и исчезает во время движения по мере приближения температуры частицы к температуре расплава. Для выяснения этого эффекта был проведен дополнительный эксперимент и измерена зависимость изменения скорости движения по высоте расплавленного хлористого натрия при температурах 902, 1024°С (рис. 2). Как видно из рисунка, скорость осаждения наступает при высоте h = (0,4—0,45) м для 902° С и h = (0,3—0,4) м для 1024° С. Занижение скоростей осаждения для всех гранул при обеих температурах составляет в среднем 30% по сравнению с теоретическими. В конце пути скорость осаждения для гранул 6,1 4,5 4,0 уменьшается (см. рис. 2) при более низкой температуре и увеличивается при более высокой температуре для всех гранул, что очевидно связано с разрушением настыли. Таким образом, на скорость осаждения гранул сферической формы в расплавленной соли существенное влияние оказывает не функция / [(Ар/р) ], а на-  [c.76]

Показано [1], что для систем расплав стекла — твердая поверхность с вязкостью стекол, не превышающей 200 пз, 0ра — оттек> вязкостный гистерезис становится особенно резко выраженным, когда вязкость достигает 5000—10 ООО пз. По данным работы [6], вязкость феноло-формальдегидных смол при температуре порядка 120° С имеет минимум и по абсолютной величине составляет менее 1000 пз.  [c.124]

Термодинамические данные в табл. 3.1 относятся не к чистому недиссоциированному криолиту, а к смеси веществ, составляющих реальный расплав криолита. Если бы криолит не диссоциировал, то температура плавления его составляла бы 1100-1150 °С.  [c.53]

РИДОВ, покидающих расплав. Водород, необходимый для его образования, содержится в адсорбированном виде в угольной матрице анода. Этот источник является весьма важным, так как при массовой доле водорода в аноде около 0,01 % (мае.) количество фтора в анодных газах составляет около 1,7, а при содержании водорода около 0,07 % повышается до 3,4—3,8 г F/кт алюминия.  [c.370]

Предполагается, что при введении в металлический расплав 20% металлоида перед стеклованием возникают молекулярные кластеры, в которых атомы металла группируются вокруг центрального металлоидного атома. Эти кластеры возникают благодаря химической связи, отражающей особенности валентных электронных оболочек атомов металла и металлоида. Однако ввиду постоянного чередования актов возникновения и разрушения подобных связей кластеры существуют довольно непродолжительное время. Например, в случае упомянутого в разделе 3.1.1 сплава Pd—Си—Si предполагается 2], что при температуре стеклования время жизни кластеров составляет 10 с. Вероятно, молекулярные кластеры имеют такое же геометрическое строение, как и в соответствующем стабильном химическом соединении атомы металлоида располагаются в центре, а металлические атомы образуют правильные полиэдры вокруг него.  [c.92]

Связующие для изделий, получаемых методом намотки. Намотку изделий осуществляют армирующими волокнистыми материалами , пропитанными связующим. Нанесение связующего на волокна осуществляют, окуная их в раствор (или расплав) связующего. При высокой вязкости связующего трудно обеспечить равномерную пропитку армирующих материалов и регулировать относительное содержание полимерной матрицы в материале. С точки зрения обеспечения стабильности и непрерывности технологического процесса важным фактором является жизнеспособность связующего в пропиточной ванне, которая должна составлять не менее 6 - 8 ч. Однако в связи с разработанными в последнее время методами высокоскоростной намотки волокон, эффективного перемешивания связующих в ванне их жизнеспособность уже не является столь критическим параметром и может ограничиваться 2 - 3 ч.  [c.55]


Ликвацию проводят в отапливаемых отражательных печах вместимостью 30—150 т. После расплавления чушек чернового свинца расплав выдерживают в печи в течение 24—36 ч. Полученный после ликвации цинк обычно содержит 0,8—1,2 РЬ и 0,03—0,04 % Fe. Извлечение цинка в этот продукт составляет около 90 %.  [c.274]

Чугун ИЧХ-12М модифицировали НП Si (до 0,5 %) путем введения в разливочный ковш емкостью 60 кг в объеме прутка, отпрессованного из гранул алюминиевого деформируемого сплава Д16 и содержащего до 3,5 % этого соединения. Полученные результаты подтвердили положительное воздействие НП на свойства чугуна, что выразилось в повышении твердости. Так, если HR чугуна без НП в термообработанном (закаленном) состоянии составляет 61,5 ед. HR , то введение в расплав прутка без НП повышает ее до 64,5 ед., а в результате введения Si — до 66,5 ед. Эксплуатационный ресурс лопаток дробеметного аппарата, отлитых из чугуна с НП Si , оказался на 15...20 % больше срока службы лопаток из обычного чугуна. Повышение износостойкости модифицированного чугуна, очевидно,  [c.282]

В и температуре расплава 860° С продолжительность травления составляет 4—5 с. Опущенный в расплав образец металла обматывают толстой платиновой проволокой и подсоединяют в качестве анода. Другие расплавы солей, например бисульфат калия, применяют Аткинсон и Рапер [1] для иридия, родия, рутения и сплавов, которые не протравливаются или протравливаются очень трудно кипящей царской водкой. При добавке в расплав хлористого натрия и двуокиси марганца травление платиноиридиевых сплавов усиливается.  [c.250]

Прочностные испытания припоев и спаев проводили на срез и разрыв. Пайку образцов выполняли по режиму, соответствующему экспериментам по определению смачивания. При отсутствии титана в припое к шлифованным образцам свинец вообще не адгезировал. Это, очевидно, связано с тем, что при 0> 90° расплав не затекает на всю глубину микроканавок, а покоится лишь на вершинах микровыступов. Термические напряжения, возникающие при охлаждении, приводят к нарушению такого несплошного контакта. На полированной поверхности стекла капля свинца в большинстве случаев удерживается достаточно прочно. Предел прочности на срез составляет десятые доли кгс/мм , но воспроизводимость результатов колеблется от нуля до прочности свинца. В случае использования титансодержащих сплавов независимо от марки стекла и чистоты обработки его поверхности разрушение при срезе при 20° С происходит только по припою и составляет 1,3 0,3 кгс/мм . Диаметр капли при испытаниях на срез составлял 5—6 мм, методика испытаний аналогична работе [3].  [c.49]

Опытные плавки проводили в печи ТВВ-2 с графитовым нагревателем в атмосфере аргона. Навеску металла с заданным содержанием углерода (100—150"г) расплавляли в алундовом тигле диаметром 40 мм. После расплавления металла и установления заданной температуры (1500° С) на молибденовой проволоке d = 0,5 мм), защищенной алундовой соломкой, к одному из плеч коромысла весов АДВ-200 подвешивали пластинку (20 X 15 X 1 мм) и определяли ее вес перед погружением в расплав. Тигель с металлом с помощью подъемного устройства медленно поднимали до соприкосновения с пластинкой момент касания фиксировали по резкому отклонению стрелки весов. После этого подъем прекращали и приступали к уравновешиванию пластинки. По разности весов до и после касания пластинкой поверхности металла определяли силу смачивания (АР), которая составляла величину от 0,1 до 3 г.  [c.132]

Схематический разрез разрушающегося стеклопластика проведен на рис. 9-4. На поверхности покрытия может существовать пленка расплавленного стекла с распределенными в ней твердыми частицами разрушенного коксового остатка. Далее лежит сравнительно толстый пористый слой обугленной (прококсованной) смолы, поддерживаемой стеклянными волокнами. Еще глубже в материале находится зона разложения, в которой происходит пиролиз органической связки до смеси летучей g и твердой S компонент. Наконец, подложку теплозащитного слоя составляет однородный материал, в котором еще не начались физико-химические превращения. В зависимости от условий обтекания расход жидкой фазы в пленке расплава может быть весьма значительным, с другой стороны, возможны случаи, когда расплав будет полностью испаряться. В любом случае будем предполагать, что пленка расплава достаточно тонкая и не препятствует просачиванию через нее пузырьков газообразных продуктов разрушения.  [c.244]

Сопоставление результатов определения значения теплоотдачи а при свободной конвекции расплава Na l -f- a l2 в лабораторных условиях с результатами определения значений 01 на промышленных электролизерах показывает, что а и ai близки по величине при одинаковых значениях qiM и Термическое сопротивление на участке расплав — стенка составляет 2,3% общего термического сопротивления теплопередачи от расплава через стенку в окружающую среду. Этот вывод имеет важное значение в связи с тем, что ранее рекомендованные величины коэффициентов теплоотдачи для алюминиевых и магнйевых электролизеров, полученные непрямыми методами [4, 5], примерно на порядок ниже, а термические сопротивления на участке расплав — внутренняя поверхность стенки ванны примерно на порядок выше полученных нами значений.  [c.105]

Ti—0,07 С—0,03 В основу припоя составляет сплав, аналогичный основе паяемого металла, из которого исключены такие элементы, как титан и алюминий, образующие хрупкие соединения на межфазиых границах, и в который введен бор (до 3 %) [17]. Расплав припоя состава (массовые доли), % Ni—15 Сг—15 Со—5 Мо— 2,5 В вводится в зазор 0,025—0,1 мм. В процессе диффузионной пайки при температуре 150 °С, совмещенной с отжигом в течение 24 ч, происходит легирование шва титаном и алюминием и выравнивание состава и структуры за счет выпадения в шве 7 -фазы типа Nis(AlTi). Образующиеся паяные соединения равнопрочны паяемому материалу при температуре 980 °С.  [c.56]

Проведенные импедансные измерения [5], т.е. исследование комплексного сопротивления электродной системы алюминий — криолитоглиноземный расплав в цепи переменного тока в зависимости от частоты, показали, что общее перенапряжение на жидком алюминиевом катоде слагается из перенапряжения перехода и диффузии. Из сопротивления перехода была оценена величина тока обмена для этой системы, которая при температуре электролиза составляет около 20 А/см .  [c.99]


Опыты по производству ферромолибдена проводили при массе садки 5—8 т и мощности индуктора 2500 кВт. Запуск реактора начинается с заливки в него 1,5 т жидкого металла, выплавленного в отдельной печи. В расплав загружают чушковый или гранулированный чугун в количестве, обеспечивающем общую массу железа 3 т. В полученный расплав при температуре около 1500вдувают смесь оксида. молибдена МоОз (содержащую 60 % Мо и 90 % МоОз) с угольной пылью и получают 50%-ный ферромолибден (содержание углерода в готовом продукте не превышает 0,1 %). Затем плавку выпускают, оставляя в печи 1 т жидкого металла. При повторном цикле в реактор вводят 2,5 т Fe и 4 т МоОз, На каждой плавке получают приблизительно 1100 кг шлака. Расход электроэнергии составляет 12240 МДж/т (3400 кВт-ч/т) ферромолибдена, Продолжительность всего цикла 240 мин, в том числе операция расплавления (с загрузкой чугуна) —40 мин продолжительность продувки 160 мин, регулирование химического состава — 35 мин и выпуск плавки — 5 мин. Это обеспечивает годовую производительность 3100 т в пересчете на молибден при трехсменной работе и 5000 ч работы в год. Разработана технология плавки ряда молибденсодержащих лигатур. Предложенный нами кремнистый  [c.291]

При плавлении металлов и сплавов в них сохраняется присущий им металлический тип связи. При нагреве металла до температуры кипения ближний порядок и металлическая связь уже полностью исчезают, а расплав теряет комплекс свойств, присущих твердому металлу. Интервал между Гпл и Ткип для ряда промышленных металлов составляет 1000 С и более. Следовательно, при литье является допустимым технологический перегрев металла на 100—200 С выше Гщ,.  [c.302]

Прибыли, работающие под атмосферным, газовым и воздушным давлениями. В закрытых прибылях при затвердевании отливки образуется корка металла, которая изолирует прибыль от атмосферы. Для повышения эффективности работы прибыли (рис. 59) в ее полость при формовке устанавливают песчаный стержень, через который воздух проникает в прибыль и оказывает давление на расплав, улучшая питание отливки. Рекомендуемая высота Ла заглубления песчаного стержня в прибыль составляет Лв 0,180ц-[- 7 мм.  [c.106]

Анализ полученных результатов показал, что из 9 слитков, отлитых с модифицированием НП (5 — НП Ti NO, 4 — TiN), только на одном из них (с НП Ti NO) обнаружены трещины. Данный слиток был отлит с высокой скоростью литья в начальный период на минимальной начальной высоте слитка — 0,7 м ( жесткий режим запуска) при максимальном расходе подаваемой в кристаллизатор охлаждающей воды, что обычно не применяется в практике литья крупногабаритных слитков. Слитки без трещин были отлиты при мягком режиме, при котором прирост скорости литья слитка до технологической и увеличение расхода охлаждающей воды осуществлялись на большей начальной длине (0,8...1,5 м). Содержание титана в алюминии в результате введения в расплав прутков с обоими НП составляло 0,028 %. Изучение микроструктуры проб-свидетелей показало, что оба НП обеспечивают получение практически одинакового зерна — в пределах 0,05...0,3 мм. Качество поверхности всех слитков соответствовало требованиям технической документации. В то же время на 5 из 9 слитков, одновременно отлитых в параллельный кристаллизатор, но без введения НП, обнаружено от одной до нескольких трещин длиной от 40 до 295 мм, расположенных как по днищу слитка, так и по днищу с переходом на широкую грань. Содержание титана в алюминии составляло 0,012...0,015 %. Величина зерна на пробах-свидетелях лежала в пределах 0,3...2,2 мм, что еще раз подтверждает роль титаносодержащих соединений в формировании мелкокристаллической структуры, которая и способствует предотвращению возникновения горячих трещин.  [c.272]

Исследования проведены на алюминиево-кремниевом сплаве АЛ2 при литье корпуса с чистовой массой 5,8 кг — сложной фасонной отливки ответственного назначения. Сплав готовили в электрической печи сопротивления САТ-0,25, переливали его в раздаточную печь ВЗО, где проводили сначала рафинирование с последующим модифицированием по серийной технологии (1,5 % тройного натрийсодержащего модификатора) и затем заливку деталей. По другому варианту сплав модифицировали 0,8...0,9 % тройного модификатора, затем в заливную ложку отбирали дозу расплава для одной заливки и в объеме модифицирующего прутка вводили в него 0,05...0,08 % НП В4С. Анализ результатов определения механических свойств показал, что за счет дополнительного введения НП В4С предел прочности ст повы-щается по сравнению с обычной технологией с 221 до 231 МПа (на 4,3 %), твердость НВ — с 617 до 628 МПа (в 1,8 раза) и относительное удлинение 5 — с 2,9 до 10,5 % (в 3,6 раза). Микроструктура в обоих случаях являлась типичной для модифицированного силумина, в котором эвтектика представляет собой конгломерат тонко измельченных фаз. В случае обработки расплава только тройным модификатором средняя длина ветвей дендритов а-твердого раствора составляла около 90 мкм, а при двойном модифицировании она уменьщилась до 35 мкм. При модифицировании тройным модификатором микроструктура характеризуется столбчатым строением, а при дополнительном введении в расплав НП В4С формируется однородная измельченная структура. Очевидно, что повышение механических свойств сплава при модифицировании НП В4С связано с измельчением его микро- и макроструктуры. Высокий уровень свойств (а 3 = 204 МПа, 5 = 5,2 %, НВ = 592,5 МПа) был получен при модифицировании только В4С. При этом макрозерно оказалось в 8 раз мельче (0,5...0,8 мм2), у сплава, приготовленного по обычной технологии.  [c.279]


Смотреть страницы где упоминается термин Составляющие , Н и F в расплаве : [c.59]    [c.5]    [c.19]    [c.95]    [c.104]    [c.174]    [c.128]    [c.292]    [c.311]    [c.314]    [c.315]    [c.322]    [c.323]    [c.323]    [c.331]    [c.252]    [c.78]    [c.82]    [c.262]    [c.264]    [c.267]    [c.269]    [c.276]    [c.277]    [c.221]   
Смотреть главы в:

Металлургия алюминия  -> Составляющие , Н и F в расплаве



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте