Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформация при кручении. Условие жесткости

ДЕФОРМАЦИЯ ПРИ КРУЧЕНИИ. УСЛОВИЕ ЖЕСТКОСТИ 171  [c.171]

Напряжения и деформации при кручении. Условия прочности и жесткости  [c.227]

Приведенные жесткости при кручении являются жесткостями Сен-Венана и при их вычислении не учитывается эффект изгибного кручения. В расчете принимается, что балки обладают бесконечной изгибной жесткостью. Виды деформаций, представленных на рис. 7.2 и 7.3, рассматриваются при условии, что сечения, бывшие плоскими до деформации, остаются плоскими после деформации. Расчет основан на использовании поперечных элементов, выполненных в форме плоских пластин и лонжеронов с U-образным поперечным сечением.  [c.165]


Деформация сжатия шатуна, выполненного из сверхпрочной стали и имеющего сечения, пропорционально уменьшенные из условия одинаковой прочности, достигает очень большой величины —4 мм. При изгибе и кручении снижение жесткости еще больше.  [c.179]

При выводе формул для относительного угла закручивания Ф 1(1х по (6.8) и для максимального касательного напряжения по (6.12) мы встретились с понятиями о полярном моменте инерции сечения (7 ) и полярном моменте сопротивления сечения Wp). Заметим, что, как видно из формулы (6.8), полярный момент инерции (1р) представляет собой геометрическую характеристику сопротивления стержня деформации кручения (модуль О —физическая характеристика). Произведение 01р называют жесткостью кругового цилиндра при кручении. В соответствии I. выражением (6.12) для полярный момент сопротивления ( ) представляет собой геометрическую характеристику сопротивляемости стержня напряжению. Условие прочности будет включать момент сопротивления ( Х р), условие жесткости будет содержать момент инерции 1р). Условие прочности согласно (6.12)  [c.105]

Уравнение (2.55) и условие (2.56) будут удовлетворены при ф =-= О, т. е. депланация сечения при осесимметричном распределении модуля сдвига и дополнительных деформаций отсутствует. В этом случае согласно. выражениям (2.50) приведенная геометрическая жесткость при кручении равна  [c.284]

Из опыта эксплуатации кулачковых и торсионных пластометров и задач, которые стоят в области изучения реологических свойств металлов и сплавов для процессов ОМД, можно определить требования, которым должны удовлетворять современные установки подобного типа - 1) широкий регулируемый скоростной диапазон испытаний в пределах 0,01—500 с 2) возможность получения больших степеней деформации (испытания на плоскую осадку, кручение) 3) возможность воспроизведения самых различных, заранее программируемых и управляемых с помощью ЭВМ законов нагружения как за один цикл испытаний, так и при дробном деформировании 4) возможность записи кривых релаксаций в паузах между нагружениями с длительностью пауз от 0,05 до 10 с 5) фиксация структуры металла с помощью резкой закалки образца в любой точке кривой течения 6) оснащение установок высокотемпературными печами для нагрева образцов до 1250 °С в обычной среде и в вакууме или среде инертного газа до 2000—2200 °С 7) возможность воспроизведения при испытаниях, особенно дробных, различных законов изменения температуры металла, фиксация температуры образца с помощью быстродействующих пирометров 8) возможность проведения испытаний не только при одноосных схемах напряженного состояния, но и в условиях сложнонапряженного состояния, особенно при исследовании предельной пластичности 9) обеспечение высоких требований по жесткости машин, по техническим характеристикам измерительной и регистрирующей аппаратуры, возможность стыковки с ЭВМ (УВМ) для автоматизированной обработки данных и управления экспериментом.  [c.49]


Другим важным фактором, влияющим на работу винта в условиях срыва, является аэроупругая реакция лопастей при больших нагрузках, выражающаяся в характере вибраций вертолета и нагрузок в цепи управления. Движение лопастей в свою очередь приводит к изменению углов атаки, а следовательно, и аэродинамических сил. В частности, большие пикирующие моменты профиля при срыве вызы-вают сильное закручивание лопасти, что непосредственно изменяет углы атаки сечений. Поскольку жесткость цепи управления лопастью обычно невелика, крутильные колебания лопасти в основном состоят из ее поворота как твердого тела за счет упругих деформаций цепи управления. Таким образом, расчет характеристик несущего винта в условиях срыва не может ограничиваться рассмотрением лишь аэродинамических сил, а требует полного анализа, включающего аэроупругие колебания лопастей. При этом углы атаки сечений должны определяться для неоднородного поля скоростей, индуцируемых вихревым следом винта с учетом упругого кручения лопасти. Игнорирование неравномерности скорости протекания и упругого кручения лопасти ведет к большим погрешностям при расчете характеристик винта в условиях срыва.  [c.798]

Опыты, проведенные рядом ученых по растяжению, сжатию и кручению цилиндрических образцов, в том числе и в условиях всестороннего сжатия гидростатическим давлением, свидетельствуют о том, что при заданной температуре и скорости деформации в условиях монотонной деформации имеется близкая к однозначной зависимость между пластичностью металла, характеризуемой предельной степенью деформации сдвига Лр, соответствующей.моменту разрушения, и коэффициентом жесткости напряженного состояния k =  [c.138]

В существующих станках основными деталями для осуществления передачи вращательного движения и крутящего момента служат валы. При работе валы претерпевают сложные деформации — кручение, изгиб, растяжение и сжатие, и поэтому к ним предъявляются особые требования жесткости для сохранения нормальных условий работы механизмов и деталей, передающих движение на вал. В зависимости от назначения и условий работы бывают валы самых различных форм и конструктивных размеров. На фиг. 33 приведены схемы работы валов и их формы. Крутящие моменты и движение вращения передаются на станках главным образом посредством зубчатых колес.  [c.51]

При разработке основ выбора геометрических элементов орнамента авторами принято, что размеры геометрических элементов поверхности существенно малы по сравнению с конструктивными размерами детали. Известно, что общая деформация литых деталей включает упругую и остаточную деформацию. Упругая деформация обусловлена перемещением и искажением (депланацией) сечения элемента в процессе обработки детали. При прочих равных условиях с увеличением толщины и площади сечения стенки доля упругой деформации, в том числе депланацин, уменьшается. Поэтому в толстостенных литых деталях этот вид деформации практически не учитывается. Однако при уменьшении толщины и площади сечения стенки и увеличении количества сочленений различных геометрических элементов доля упругой деформации, в особенности депланации, резко возрастает. Метод литья в отличие от других методов получения заготовок имеет значительное преимущество— возможность варьировать процессом кристаллизации и получать на поверхности рациональные геометрические элементы, создавая наиболее благоприятное сочетание свойств материалов и геометрических особенностей отливок. При уменьшении поперечного сечения бруса или пластины уменьшается его статический момент, а с ним и жесткость конструкции при изгибе и кручении. Поэтому геометрические элементы в виде тонких стержней с гладкой поверхностью рационально применять для литых деталей, работающих в условиях растягивающих и сжимающих напряжений. Геометрический элемент в виде тонкостенного бруса открытого профиля, обладающего малой жесткостью при кручеиии, целесообразно применять для литых деталей, воспринимающих нагружение изгибом, растяжением и сжатием. Геометрические элементы могут иметь и более сложную конфигурацию, обусловливающую анизотропию свойств в различных направлениях.  [c.19]


Однако было бы поспещным удовлетвориться лишь констатированием этого факта и считать вышеприведенное заключение окончательным, В действительности оказывается, что тонкостенные стержни открытого профиля обладают дополнительными ресурсами в отношении их сопротивления кручению. Как известно, две статически эквивалентные нагрузки, приложенные к торцам таких стержней, могут вызвать в них существенно различные деформации и напряженные состояния, причем эта разница будет иметь уже не местный характер. Поэтому если решить для тонкостенных стержней открытого профиля так называемую задачу о стесненном его кручении, т. е. положить, что депланации на торцах скручиваемого стержня устранены, то жесткость его С окажется гораздо большей, чем жесткость, вычисленная по фор-.муле (144) при свободном кручении. На практике условия закрепления торцов скручиваемого стержня всегда бывают такими, что они в той или иной мере запрещают торцовые депланации.  [c.276]

Основная проверка определенности состоит в обнаружении пробных функций, которые при численном интегрировании теряют всю свою энергию деформации. Практически это выясняется из ранга матрицы жесткости элемента если единственное нулевое собственное значение появляется от перемещений твердого тела, то квадратурная формула правильна. Если еще есть нулевые собственные значения, то квадратурная формула может все же быть приемлемой надо проверить, можно ли собрать полиномы, грешащие на отдельных элементах, в пробную функцию обладающую слишком малой энергией на всей области (как в случае кручения, описанного выше). Например, четырехтЬчечная формула Гаусса (2X2) не удовлетворяет нашему условию устойчивости для биквадратичных функций с девятью параметрами. Для гауссовых узлов ( , ) на квадрате с центром в начале координат функция (л — 1 ) ( 2 — 2 имеет нулевую энергию деформации этот шаблон можно передвигать и тогда трудности будут на всей области. (Матрица К на самом деле может не быть вырожденной, если эта схема не отвечает краевым условиям (скажем, и = 0) задачи. В этом случае можно рискнуть и испытать такую четырехточечную формулу интегрирования, даже если К намного ближе к вырождению, чем позволено теорией.)  [c.222]


Смотреть страницы где упоминается термин Деформация при кручении. Условие жесткости : [c.34]    [c.149]    [c.276]   
Смотреть главы в:

Сопротивление материалов  -> Деформация при кручении. Условие жесткости



ПОИСК



Деформация кручения

Жесткость при кручении

Условие жесткости

Условия деформации



© 2025 Mash-xxl.info Реклама на сайте