Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Профиль в потоке сжимаемого газа

ПРОФИЛЬ в ПОТОКЕ СЖИМАЕМОГО ГАЗА  [c.175]

В случае сверхзвукового обтекания (Л/>1, Л/5<<1) профиля, колеблющегося в потоке сжимаемого газа, выражение для аэродинамических сил имеет вид [55, 64]  [c.518]

Подсасывающая сила. Как было установлено в 6.3, на передней кро.мке профиля, обтекаемого несжимаемой жидкостью, возникает подсасывающая сила. Такой же эффект имеет место и в случае обтекания профиля дозвуковым потоком сжимаемого газа. При этом на величину подсасывающей силы будет оказывать влияние стреловидный характер  [c.288]


Решетка профилей в плоском докритическом потоке сжимаемого газа. Обобщение теоремы Жуковского  [c.358]

В книге обобщены исследования по аэроакустике и аэроакустическим характеристикам затопленной, спутной, соосной струй и струй, истекающих из сопел различных конфигураций. Изложена теория малых вихревых, энтропийных и акустических возмущений в неоднородном потоке сжимаемого газа. Рассмотрены основные источники шума. Дан метод расчета интенсивности излучения шума различными участками турбулентной струи. Приведены решения задач о шуме профиля, свободного ротора при дозвуковых, около- и сверхзвуковых скоростях и др.  [c.376]

Таким образом, линеаризованному потоку сжимаемого газа, обтекающему тонкий профиль, соответствует поток несжимаемой жидкости, имеющий тот же потенциал скоростей, но обтекающий профиль, толщина которого, как и угол атаки, больше в]/" 1—М раз. Физически это объясняется тем, что с ростом числа Моо дозвукового обтекания свойство сжимаемости среды приводит к более сильному увеличению местных скоростей возмущения, вызванных присутствием тонкого тела, причем  [c.539]

Для определения влияния сжимаемости при докритических скоростях на распределение скоростей и давления по профилю можно воспользоваться также другой приближенной теорией, основанной на гипотезе затвердевания линий тока при обтекании данного тела потенциальными потоками несжимаемой жидкости и сжимаемого газа ). Согласно уравнению неразрывности для элементарной струйки тока, прилегающей к профилю, в изоэнтропическом потоке газа справедливо следующее соотношение  [c.36]

Предположим, что линеаризованному потоку газа, обтекающему тонкий профиль, соответствует поток несжимаемой жидкости, имеющий тот же потенциал скоростей, что и для сжимаемого газа. Каким образом в данном случае будет деформироваться профиль и изменится ли угол атаки при переходе от сжимаемого потока к несжимаемому  [c.172]

Найдите углы атаки тонкого профиля в условиях несжимаемого = 0) и сжимаемого потоков (Мо, = 0,5) газа, если коэффициент подъемной силы профиля Су а = 0,15.  [c.173]

Физически это объясняется те.м, что с увеличением числа М дозвукового обтекания свойство сжимаемости среды приводит к более сильному увеличению местных скоростей возмущения, вызванных присутствием тонкого тела, причем это увеличение пропорционально 1/1/1 — М . Такое явление обусловлено тем, что в сжимаемом газе при увеличении местных скоростей в струйках около тела уменьшение давления вызывает уменьшение плотности, а это, в свою очередь, вследствие постоянства местного расхода в струйках, равного расходу р, Усс в невозмущенном потоке перед телом, должно быть компенсировано более значительным возрастанием местной скорости, чем в сжимаемом потоке при прочих равных условиях. Это возрастание скоростей возмущения в сжимаемом потоке компенсируется увеличением толщины и угла атаки того же профиля, но обтекаемого потоком несжимаемой жидкости.  [c.178]


Метод капилляра широко применяется для измерения вязкости жидкостей и газов при температуре до 2000 К. Метод основан на решении уравнения Гагена—Пуазейля [5] для стационарного ламинарного течения в капилляре бесконечной длины. В реальных условиях эксперимента вносятся поправки на сжимаемость среды, эффект скольжения на стенке капилляра при исследовании вязкости газов в области малых давлений, на перестройку профиля скорости потока вещества на входе и выходе из капилляра. Расчетная формула для динамической вязкости имеет вид  [c.424]

Первое строгое обобщение теории Жуковского о подъемной силе на случай обтекания профиля сжимаемым потоком при ограниченных скоростях было дано Ф. И. Франклем и М. В. Келдышем (Внешняя задача Неймана для нелинейных эллиптических уравнений с приложением к теории крыла в сжимаемом газе.— Изв. АН СССР, серия VII. Отд. матем. и естеств. наук, 1934, № 4, стр. 561—601).  [c.292]

В предыдущем параграфе рассматривались лишь те простейшие случаи до- и Сверхзвуковых течений, которые приводили к возможности использования линеаризированных уравнений движения. Малость возмущений, создаваемых обтекаемыми телами, позволяла отбрасывать вторые и старшие степени, а также произведения возмущенных элементов потока и их производных. При обтекании крыловых профилей сравнительно большой толщины и вогнутости уже нельзя пользоваться линеаризированными уравнениями и граничными условиями, а приходится обращаться к общим, нелинеаризированным уравнениям течения сжимаемого газа.  [c.340]

Фиг. 196. Схема перехода от профиля в потоке сжимаемого газа к эквивалентному профилю в песна-гмаемой жидкости. Фиг. 196. Схема перехода от профиля в потоке <a href="/info/20752">сжимаемого газа</a> к эквивалентному профилю в песна-гмаемой жидкости.
В методе Лайтхилла трудности, перечисленные в пп. 1-3, были преодолены. При этом удалось найти класс профилей, обтекаемых потоком сжимаемого газа в широком диапазоне чисел Моо, в том числе и при Моо > (без скачков уплотнения). А именно, было показано, что  [c.143]

Ур-ния типа X.—3. у. использовались незавксимо с кон. 1940-х гг. в механике для расчёта обтекания тонких аэро-динамич. профилей трансзвуковыми потоками сжимаемо-го газа, а в 1970-х гг. для расчёта ударных волн с пространственно-ограниченным фронтом.  [c.415]

Выше были рассмотрены характеристики дозвуковых компрессорных решеток, полученные при малых скоростях потока. Как показывают многочисленные экспериментальные исследования, при небольших дозвуковых скоростях потока сжимаемость газа не оказывает существенного влияния на характер обтекания решетки. С увеличением числа М потока (до М < 0,6. .. 0,7) потери в решетке растут незначительно, а угол отставания потока 6 практически остается постоянным (рис. 3.1). При дальнейшем увеличении числа М потока на входе в решетку местные скорости в отдельных зонах поверхности профиля достигают скорости звука. Образуются зоны сверхзвуковых скоростей с замыкаю-П1,ими их скачками уплотнения, которые приводят к появлению волновых потерь. При некотором значении числа М набегающего потока у основания скачков уплотнения возникают местные отрывы пограничного слоя от поверхности профиля (рис. 3.2), что вызывает резкое возрастание коэффициента потерь и увели-чепир уг.иа отставания потока в решетке б (см. рис. 3.1).  [c.66]

Безотрывное обтекание профиля потоком сжимаемого газа топологически эквивалентно обтеканию профиля несжимаемой жидкостью. Это доказано в [19] с помощью теории квазиконформных отображений (отображение физической плоскости в плоскость (рф квазиконформно, если в потоке отсутствуют скачки уплотнения и если скорость не достигает предельного значения, т.е. если М < ос). Таким образом, как указывается в [19], это утверждение справедливо не только в случае равномерно дозвуковых обтеканий, но и тогда, когда образуются сверхзвуковые включения с непрерывным полем скорости.  [c.134]


В общем случае решение задачи об обтекании заданной решетки профилей изоэнтроническим потоком газа представляет собой значительные трудности ). Один из простых приближенных способов оценки влияния сжимаемости при докрнтических течениях основан на предположении, что при фиксированном угле направление потока за решеткой не должно зависеть от числа М1 <М1 р. Иначе говоря, зависимость 2( 1) остается такой же, как и при обтекании данной решетки потоком несжимаемой жидкости. Такое предположение не налагает никаких ограничений на возможную трансформацию линий тока в непо-  [c.66]

В рассмотренных примерах в качестве сжимаемого рабочего тела использовался газ или пар. Между тем в определенных случаях эффективным может оказаться использование в качестве рабочего тела высоковлажной двухфазной смеси, полученной в результате адиабатного вскипания насыщенней или недогретой до насыщения жидкости. В следующей главе будут рассмотрены примеры использования таких устройств применительно к задачам централизованного теплоснабжения. Основная трудность теайшческой реализации таких устройств состоит в определении профиля сопел, работающих на вскипающих потоках. Особый интерес представляет реализация возмом ности использования насосов, работающих на скачке давления, в системе регенеративного подогрева питательной воды на тепловых и атомных злектростанщях. На рис. 5.7 изображена принципиальная тепловая схема турбоустановки К-220-44, система регенерации которой содержит пять подогревателей низкого  [c.109]

Для турбулентного пограничного слоя несжимаемой жидкости экспериментально подтверждены логарифмический профиль скоростей и связанные с ним полуэмпирические теории турбулентности Прандт-ля — Кармана. При этом установлено, что логарифмический профиль скоростей мало чувствителен к продольному градиенту скорости невозмущенного потока при конфузорном течении, а также при диффу-зорном течении в области, удаленной от точки отрыва. Соответственно консервативны в этом смысле и зависимости i(l), на что указывалось в работе В. М. Иевлева [Л. 1]. Уравнения Рейнольдса, обобщенные на течение сжимаемого газа, позволяют. распространить на последний полуэмпирические теории турбулентности, так что в получающихся  [c.106]

Развитие приближенного метода Чаплыгина и, в частности, решение задачи о циркуляционном обтекании профиля сжимаемым потоком обусловили в значительной степени успех теории решеток, находящихся в потоке газа, которую можно рассматривать как обобщение теории обтекания профиля крыла. Именно использование приближенного метода Чаплыгина позволило исследовать дозвуковое обтекание решеток. Б этом направлении во второй половине 40-х годов были выполнены значительные работы (Л. И. Седов, Г. Ю. Степанов, Линь Цзя-цзяо, Дж. Костелло). Укажем, что расчет чисто сверхзвукового течения в решетках производится преимущественно по методу характеристик Прандтля — Вуземана, а теория смешанного до-и сверхзвукового течения до настоящего времени не разработана.  [c.322]

Причина этого заключается в том, что применение изложенного в работе метода годографа скоростей выходит далеко за рамки той сравнительно узкой цели обобщения теории струйного обтекания тел Кирхгоффа — Жуковского на случай сжимаемого газа, которую поставил перед собой С. А. Чаплыгин. Метод этот получил дальнейщее развитие в известных исследованиях акад. С. А. Христиановича, относящихся к определению влияния сжимаемости газа на обтекание крылового профиля при больщих докритических скоростях потока.  [c.35]


Смотреть страницы где упоминается термин Профиль в потоке сжимаемого газа : [c.391]    [c.539]    [c.401]    [c.401]    [c.141]    [c.430]   
Смотреть главы в:

Аэродинамика в вопросах и задачах  -> Профиль в потоке сжимаемого газа

Аэродинамика Ч.1  -> Профиль в потоке сжимаемого газа

Прикладная аэродинамика  -> Профиль в потоке сжимаемого газа

Прикладная аэродинамика  -> Профиль в потоке сжимаемого газа



ПОИСК



Зависимость между параметрами обтекания тонкого профиля сжимаемым газом и потоком несжимаемой жидкости

Поток сжимаемый

Решетка профилей в плоском докритическом потоке сжимаемого газа. Обобщение теоремы Жуковского

Сжимы



© 2025 Mash-xxl.info Реклама на сайте