Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кристаллическое строение реальных металлов и их прочность

Кристаллическое строение реальных металлов и их прочность  [c.22]

Модуль упругости Е практически не зависит от химического состава и термической обработки стали. Приведенный здесь предел прочности установлен экспериментальным путем. Он во много раз (в 100 раз и более) меньше теоретических значений, подсчитанных исходя из сил межатомных связей. Это объясняется отклонением строения реальных кристаллов металла от идеального строения кристаллических решеток, т. е. несовершенством (дефектами) кристаллических решеток реальных металлов. Наибольшее влияние на снижение прочности металла оказывают  [c.37]


Несоответствие между теоретической и наблюдаемой прочностью кристаллических тел является результатом того, что внутреннее строение реального металла отличается от идеального.  [c.9]

Второй способ повышения реальной прочности металлов заключается в изменении структурного состояния материала при заданном постоянном уровне сил межатомных связей. Низкие значения прочности технических ЛОО металлов и сплавов объясняются неоднородностью структуры — наличием неравномерно распределенных несовершенств кристаллического строения (дислокаций, вакансий, чужеродных атомов) и границ зерен, а также металлургических дефектов (пор, химической неоднородности и т. д.). Это приводит к резкому снижению энергоемкости металла ( мех вследствие неоднородного характера поглощения энергии различными объемами металла, т. е. к уменьшению величин 1 5 и п [см. уравнение (10)].  [c.22]

Наиболее строгое обоснование причин расхождения реальной и теоретической прочности дает дислокационная теория скольжения, на основе которой показано, что локализованное скольжение при наличии дислокаций в кристаллической решетке может начаться при весьма небольших напряжениях. Таким образом, причиной низкой прочности реальных металлов является наличие в структуре материала дислокаций и других несовершенств кристаллического строения. Если резко снизить количество таких несовершенств и таким образом приблизить кристаллическое строение металла к совершенному, то его прочность должна быть близка к теоретической. Это положение нашло в последние годы непосредственное экспериментальное подтверждение. Нитевидные кристаллы (усы) показывают высокую прочность, приближающуюся к теоретической.  [c.97]

Дробеструйная обработка применяется для восстановления жесткости пружин, торсионов и рессорных листов. Сущность ее заключается в том, что поток дроби (стальной, чугунной, стеклянной) диаметром 0,6... 1,2 мм направляется на обрабатываемую деталь со скоростью до 100 м/с, в результате чего поверхностный слой наклепывается. Вследствие пластической деформации в поверхностном слое детали возникают не только параллельные, но и ориентированные в разных плоскостях и. направлениях несовершенства кристаллического строения - дислокации. Повышение плотности дислокаций служит препятствием к их перемещению, от этого возрастает реальная прочность материала. Кроме того, образуется большое количество линий сдвига, дробятся блоки мозаичной структуры, что упрочняет поверхностный слой металла на глубину 0,2...0,6 мм. Шероховатость поверхности при этом достигает значений Rz 40...20 мкм. Предварительная химико-термическая обработка и закалка ТВЧ повышают глубину наклепа в 2,0...2,5 раза, что обеспечивает объемное воздействие механической обработки на материал детали.  [c.544]


В табл. 2.2 [77] приведены значения плотности дислокации р , равной суммарной длине дислокационных линий в единице объёма материала, для некоторых его состояний. Из данных табл. 2.2 и рис. 2.3 видно, что прочность реальных металлов можно повысить. Первый путь - создание бездислокационных металлов или металлов со сниженным числом дислокаций кристаллической решётки за счёт повышения их химической чистоты, а также в результате управления процессами кристаллизации и формирования структуры. Вторым путём является увеличение числа дислокаций и создание субмикроскопической неоднородности строения, которое достигается на практике поверхностным пластическим деформированием.  [c.40]

Приведенные здесь пределы прочности установлены экспериментальным путем. Они во много раз (в 100 раз и более) меньше теоретических значений, подсчитанных исходя из сил межатомных связей. Это объясняется отклонением строения реальных кристаллов металла от идеального троения криеталляческих решеток, т. е. несовершенством (дефектами) кристаллических решеток реальных металлов. Наибольшее влияние на снижение прочности металла оказывают чисто геометрические нарушения идеального строения кристаллов, называемые дислокацией. Другие нарушения (атомные пропуски—вакансии, расположение чужеродных атомов в межузлнях решетки и т. д.) незначительно влияют на прочность металла.,  [c.35]

В кристаллической решетке реального металла присутствуют и химические неоднородности в виде атомов примесей. В любом так называемом чистом металле присутствует иекоторре количество примесей. Атомы примесей могут оказаться внедренными в междуузлиях решетки (по схеме на рис. 4, б) или могут заместить атомы основного металла в узлах решетки. Поскольку атомы и ионы примесей обладают иными размерам , зарядом, строением внешних электронных оболочек по сравнению с атомами основного металла, присутствие примесей сказывается на всех свойствах металла. Примеси, как правило, существенно повышают прочность, снижают способность к пластическому деформированию,  [c.34]

Зависимость сопротивления деформированию и разрушению от числа искажений в кристаллической решетке. Атомная решетка реального кристаллического тела имеет разнообразные искажения (дефекты), оказывающие влияние на его прочность. К таким дефектам кристаллического строения металлов и сплавов относятся вакансии, атомы примесей, дислокации, границы зерен и блоков мозаики и микродефекты структуры. Решающая роль в процессах пластической деформацтг тг разрушештя--ттртгадлежит ди юка- -циям.  [c.9]

Таким образом, причиной низкой прочности реальных металлов является наличие в структуре материала дислокаций и других несовершенств кристаллического строения. Получение бездисло-кационных кристаллов приводит к резкому повышению прочности материалов (рис. 1.10).  [c.13]

Основой химического элемента, в том числе и металлов, является атом, состоящий из электрически положительного заряженного ядра и отрицательно заряженных электронов. Способность атомов соединяться 1руг с другом, образовывая связи различной прочности, объясняется разницей в электронном строении элементов. Свойства атома, а также связь между собой атомов одних и тех же элементов а атомов различных элементов зависят от общего числа электронов в атоме, расположения их по электронным уровням. Соединение отдельных атомов между собой и образование атомных комплексов обусловливает создание молекул химических соединений, образование атомных агрегатов металлов и других веществ. Эта способность атомов одного и того же или различных веществ образовывать неразъемное соединение является важнейшим фактором при сварке металлов. Основой образования неразъемных соединений является взаимодействие электронов, а движущей силой этого взаимодействия — стремление атомов к образованию завершенных электронных оболочек и достижению наиболее устойчивого распределения электронов. Возможность отдачи электронов одними атомами и присоединения их другими создает положительно и отрицательно заряженные ионы, которые, притягиваясь друг к другу, обусловливают наличие прочной атомной связи. Оставшиеся у ионов заполненные или незаполненные оболочки, взаимодействуя, определяют строгую закономерность расположения атомов-ионов в пространственной кристаллической решетке. Характер этого расположения атомов определяет вид пространственной кристаллической решетки. Для соединения двух металлов имеет значение соответствие их кристаллического строения и размеров атомов. Лучшие условия для совмещения атомов и установления общности кристаллического строения атомов, т. е. для сварки, будут при одинаковых кристаллических решетках, однотипных решетках с близкими параметрами и атомами с близкими размерами. В реальных условиях четкая закономерность нарушается наличием  [c.4]


Для объяснения механизма пластического деформирования была разработана теория дислокаций. По этой теории при пластическом дес юрмировании в металле образуются, перемещаются и взаимодействуют между собой и с другими дефектами кристаллического строения линейные несовершенства, называемые дислокациями. Впервые понятие о дислокациях было введено в 1934 г. Тэйлором в Англии и одновременно венграми — Орованом и Поляки. Теория дислокаций, получившая в последнее время экспериментальное подтверждение , объясняет многие явления, протекающие в металлах, в том числе низкую реальную прочность металлов по сравнению с их теоретической прочностью.  [c.100]

В четырех главах книги рассматриваются различные аспекты весьма актуального вопроса, связанного с созданием и практическим осуществлением новых путей резкого повыщения дроч-ности металлов. Эта проблема в настоящее время является одной из основных в металловедении. Развиваемые теорией дислокаций П1редставления о несоверщенном строении кристаллических материалов позволили объяснить, почему реальная прочность металлов составляет всего лишь десятые или даже сотые доли процента от теоретической. Настоящая же теория должна не юлько констатировать и объяснять те или иные явления и процессы, но и предсказывать пути управления этими процессами с целью получения нужных нам свойств.  [c.3]

Как правило, толщина легируемого слоя намного меньше толщины образца, и с хорошей степенью точности можно считать применимой схему плосконапряженного состояния поверхности. Имплантированный ион раздвигает соседние атомы появление радиационных дефектов (вакансий, между-узельных атомов) в большинстве металлов также приводит к напряжениям сжатия. Эпюра напряжений при небольших дозах легирования практически повторяет распределение легирующей примеси, однако рост напряжений ограничен пределом прочности материала. При увеличении дозы выше критической происходит сброс напряжений за счет пластического течения или хрупкого разрушения. Эпюра остаточных напряжений приобретает платообразный вид с постепенным выходом максимума на поверхность. С точностью до масштабного множителя эпюра напоминает распределение примеси при высоком уровне легирования, когда становятся существенными процессы распыления. Согласно оценкам для модели твердых сфер, внедряемых в сплошную среду [126], пластическое течение в ионно-имплантированном слое при легировании чистых металлов собственными ионами начинается при дозах порядка Ю —10 ион/см , т. е. при концентрации легирующей примеси, не превышающей десятых долей процента. Реальная картина значительно сложнее и требует учета возникающих при торможении ионов дефектов строения, места расположения внедренных ионов в кристаллической решетке, анизотропии констант упругости. Многочисленные экспериментальные данные по легированию сталей ионами азота указывают на начало роста твердости стали при дозе порядка 10ион/см . При этом концентрация примесных атомов слишком мала для образования вы сокопрочных выделений  [c.90]


Смотреть страницы где упоминается термин Кристаллическое строение реальных металлов и их прочность : [c.126]    [c.245]   
Смотреть главы в:

Технология литья жаропрочных сплавов  -> Кристаллическое строение реальных металлов и их прочность



ПОИСК



28—31 — Строение

Кристаллические

Кристаллическое строение

Кристаллическое строение металлов

Прочность металлов

Реальная прочность

Реальный газ

Строение металлов

Строение реальных металлов

Строение реальных тел



© 2025 Mash-xxl.info Реклама на сайте