Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Применение дифференциальных уравнений движения неголономных систем

Из общего уравнения динамики вытекают дифференциальные уравнения движения материальной системы, в которые не входят реакции идеальных связей. Возможно решение как первых (определение сил по заданному движению), так и вторых задач (определение движения по заданным силам) динамики. При решении вторых задач приходится интегрировать составленную систему дифференциальных уравнений движения. Заметим, что использование общего уравнения динамики является формальным методом составления дифференциальных уравнений движения системы. Этот метод является менее удобным и менее эффективным по сравнению с применением уравнений Лагранжа второго рода (читатель сможет в этом убедиться, ознакомившись с содержанием следующего параграфа). Однако общее уравнение динамики справедливо как для голономных, так и для неголономных систем. Уравнения Лагранжа второго рода применимы только к голономным системам.  [c.451]


Рассмотрим движения систем, на которые наложены неголономные связи. В предыдущей главе уравнения движения систем при наличии неголономных связей подробно не рассматривались. Дело в том, что в этих случаях метод Лагранжа связан с необходимостью применения систем координат, в которых число дифференциальных уравнений движения превышает число степеней свободы системы. Разность между числом дифференциальных уравнений движения и числом степеней свободы системы равна числу неголономных связей, наложенных на точки системы. Основным содержанием настоящей главы является рассмотрение некоторых особых способов преобразования дифференциальных уравнений движения, которые позволяют описать движение материальной системы с неголономными связями системой дифференциальных уравнений, число которых равно числу степеней свободы системы.  [c.151]

Под моментом сил Остроградский подразумевал работу сил. Итак, здесь ученый развивает мысль о распространении метода возможных перемещений на системы с освобождающими связями, поставив условием равновесия требование, чтобы полный момент сил был равен нулю или меньше нуля. Этот же метод был применен Остроградским для вывода дифференциальных уравнений движения, причем эти уравнения были выведены Остроградским и для случая голономных освобождающих связей, и для дифференциальных (неголономных) связей линейного вида.  [c.221]

Поскольку движение систем с дифференциальными связями нередко описывают уравнениями, содержащими реакции этих связей или неопределенные множители Лагранжа, то применение теории Рауса к таким системам требует особой внимательности [14, 20]. Дело в том, что указанные выше уравнения систем с дифференциальными связями не могут быть представлены в виде (1), так как для реакций связей или неопределенных множителей Лагранжа нет соответствующих дифференциальных уравнений. Поэтому для применения теории, изложенной в предыдущих параграфах, к неголономным системам, необходимо исключить зависимые скорости из выражений всех первых интегралов указанных уравнений движения системы с помощью уравнений неголономных связей. При этом полученные функции будут представлять собой первые интегралы уравнений движения рассматриваемой системы, записанных в форме Чаплыгина (см. следующий параграф), Воронца, Больцмана-Гамеля и др., которые не содержат реакции связей и неопределенные множители Лагранжа и представимы в виде (1), а сами первые интегралы примут вид (2).  [c.436]


Применение методов аналитической механики к решению нетривиальных задач требует уже при составлении уравнений подробных сведений по вопросам, на которых, как правило, останавливаются весьма кратко. В связи с этим в книге значительное внимание уделено способам введения обобщенных координат, теории конечных поворотов, методам вычисления кинетической энергии и энергии ускорений, потенциальной энергии сил различной природы, рассмотрению сил сопротивления. После этих вводных глав, имеющих в известной степени и самостоятельное значение, рассмотрены методы составления дифференциальных уравнений движения голономных и неголономных систем в различных формах, причем обсуждаются вопросы их взаимной связи подробно рассмотрены вопросы определения реакций связей и некоторые задачи аналитической статики. Мы считали полезным привести геометрическое рассмотрение движения материальной системы, как движение изображающей точки в римановом пространстве этот материал нашел, далее, применение в задачах теории возмущений. Специальная глава отведена динамике относительного движения, к которому приводятся многочисленные прикладные задачи. Далее рассмотрены канонические уравнения, канонические преобразования и вопросы интегрирования. Значительное место уделено теории возмущений и ее разнообразным применениям. Последняя глава посвящена принципу Гамильтона—Остроградского, принципу наименьшего действия Лагранжа и теории возмущений траекторий.  [c.9]

Уравнения Аппеля. Применение уравнений Лагранжа с неопределенными множителями при составлении уравнений движения механизма с неголономными связями приводит к необходимости совместного решения системы уравнений, число которых превышает число степеней свободы на удвоенное число неголономных связей. Поэтому для изучения динамики механических систем с неголономными связями неоднократно предлагались дифференциальные уравнения, применение которых позволяет уменьшить число совместно решаемых уравнений. Из этих уравнений рассмотрим лишь уравнения Аппеля ).  [c.157]

Тем более подобные ситуации возможны при распространении метода Гамильтона — Якоби на системы с неголономными связями. Мы проиллюстрировали предложенный нами описанный способ применения метода Гамильтона — Якоби к неголономным системам на примере частного случая задачи Каратеодори — Чаплыгина, а также на примере движения без скольжения однородного шара по горизонтальной плоскости. Для данной задачи уравнение Гамильтона — Якоби было составлено в нормальных неголономных координатах, полный интеграл был найден и с его помощью выявлен один первый интеграл уравнений движения — неизменность проекции угловой скорости шара на вертикаль. Этого было достаточно для решения всей задачи в силу наличия двух дифференциальных уравнений связей, интеграла энергии и вытекавшей из элементарных соображений общей механики прямолинейности движения центра тяжести шара. Наши работы по данному вопросу получили в дальнейшем отклик. В конце сороковых годов итальянский механик Пиньедоли опубликовал статью по данному вопросу с той же методикой. В настоящее время данной проблемой занимались в своих кандидатских диссертациях молодые научные работники (Назнев X. А., Титкова С. И.).  [c.8]


Смотреть страницы где упоминается термин Применение дифференциальных уравнений движения неголономных систем : [c.15]   
Смотреть главы в:

Курс теоретической механики. Т.2  -> Применение дифференциальных уравнений движения неголономных систем



ПОИСК



Движение дифференциальное

Движение системы

Дифференциальное уравнение движения

Дифференциальное уравнение, движени

Дифференциальные системы

Неголономные системы, уравнения

Неголономные системы, уравнения движения

Применения к дифференциальным уравнениям

Система дифференциальных уравнений

Системы Применение

Системы Уравнение движения

Системы неголономные

Уравнения движения системы дифференциальные



© 2025 Mash-xxl.info Реклама на сайте