Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Построение линии пересечения поверхности многогранника с плоскостью

ПОСТРОЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТИ МНОГОГРАННИКА С ПЛОСКОСТЬЮ  [c.38]

Построение линии пересечения многогранника с плоскостью начинают с определения точек пересечения ребер (по алгоритму предыдущей задачи) и линий пересечения граней с плоскостью. Рассмотрим рещение этой задачи на примере построения усеченной пирамиды, верхнее основание которой представлено фрон-тально-проецирующей плоскостью (рис. 5.2а). Отметив фронтальные проекции точек пересечения ребер D , пирамиды с плоскостью, нетрудно найти горизонтальные проекции этих точек Z),, с помощью линий связей, проведенных до пересечения с горизонтальными проекциями соответствующих ребер. Так точка D, находится на горизонтальной проекции ребра A S ,F - на проекции ребра В,5, и - на проекции ребра С,5, (рис. 5.26). Соединив горизонтальные проекции точек пересечения ребер с верхним основанием пирамиды, получим его горизонтальную проекцию На виде сверху ребра и видны, обведем их основной контурной линией. Построение линии пересечения поверхностей плоскостями обычно является предварительной операцией для выполнения разверток.  [c.98]


Для построения линии пересечения поверхности тела плоскостью необходимо найти ряд точек этой линии, т. е. точек, общих для поверхности и плоскости. Соединив последовательно найденные точки на чертеже, определяем линию пересечения. При построении линии пересечения плоскостью линейчатой поверхности (многогранника, конуса или цилиндра) достаточно найти точки пересечения ряда прямых (ребер или образующих), взятых на поверхности, с этой плоскостью, т. е. решить задачу на пересечение прямой с плоскостью.  [c.135]

Пересечение многогранника плоскостью. Линией пересечения поверхности многогранника плоскостью является плоский многоугольник. Его вершины являются точками пересечения ребер с заданной плоскостью, а стороны-линиями пересечения граней с плоскостью (рис. 51, а). Таким образом, построение сечения многогранника плоскостью сводится к определению точек пересечения прямой с плоскостью или к определению линии пересечения плоскостей.  [c.42]

Задача построения линии пересечения двух многогранников сводится к нахождению этих точек. Отсюда метод решения подобной задачи найти точки пересечения (входа и выхода) ребер первого многогранника с гранями второго, а потом наоборот — ребер второго многогранника с гранями первого. Точки пересечения последовательно соединяются прямыми линиями, предварительно определив их видимость, по общему правилу, рассмотренному в предыдущем параграфе (рис. 146, 147). Нахождение точек линии пересечения осуществляется при помощи вспомогательных секущих плоскостей. Секущая плоскость — это плоскость, пересекающая какую-либо поверхность (в данном случае многогранник). При пересечении многогранника секущей плоскостью получают фигуру сечения — многоугольник, прямоугольник, треугольник и др. Если секущая плоскость проведена через прямую — ребро одного многогранника, то пересечение этой  [c.105]

На рис. 118 приведено построение проекций шара с треугольным отверстием. Решение этого примера основано на построении линий пересечения многогранника (призмы) с поверхностью вращения (сферой) и выполняется с помощью плоскостей-посредников (а, Р и параллельные им плоскости).  [c.58]

Для построения линии пересечения двух фигур чаще всего применяют метод вспомогательных плоскостей или поверхностей (посредников). В качестве посредников применяют плоскости или шаровые поверхности. Задачи решаются в такой последовательности проводят несколько удачно выбранных посредников. Каждый посредник пересекает заданные поверхности по простейшим линиям (прямым или окружностям) общие точки взаимного пересечения полученных линий принадлежат одной и другой поверхностям, т. е. принадлежат линии их пересечения. Найдя достаточное количество точек, соединяют их плавной кривой. Если пересекаются два многогранника, то при помощи посредников определяют точки пересечения ребер одного многогранника с гранями второго. Полученные точки соединяют между собой в определенной последовательности.  [c.137]


Глава XI ПОСТРОЕНИЕ ТОЧЕК ПЕРЕСЕЧЕНИЯ КРИВОЙ ПОВЕРХНОСТИ С ПРЯМОЙ ЛИНИЕЙ И ЛИНИИ ПЕРЕСЕЧЕНИЯ КРИВОЙ ПОВЕРХНОСТИ С ПЛОСКОСТЬЮ и МНОГОГРАННИКОМ  [c.73]

Построение точек пересечения прямой с поверхностью многогранника производится тем же приемом, что и построение точки пересечения прямой с плоскостью, но конкурирующая с данной прямой линия проводится не на плоскости, а на поверхности многогранника. Поэтому эта линия будет представлять собой ломаную линию, сторонами которой будут служить отрезки прямых, лежащих в гранях многогранника и конкурирующих с данной прямой. Точки пересечения данной прямой с вспомогательной линией и будут точками пересечения прямой с поверхностью многогранника. Если прямая не будет пересекаться с вспомогательной линией, то это означает, 4to прямая не пересекается с многогранником.  [c.65]

Построение линии пересечения поверхностей двух многогравг-ников часто сводится к нахождению точек пересечения ребер каждого из пересекающихся многогранников с гранями другого, т. е, к решению задачи на пересечение прямой линии с плоскостью (см. 23 и 33). В некоторых случаях удобно сразу находить отрезки  [c.149]

Обишй способ построения линии пересечения поверхностей двух многогранников заключается в том, что мы находим точки встречи ребер одного многогранника с гранями другого, и наоборот. Таким образом, мы несколько раз решаем задачу на определение точки встречи прямой с плоскостью.  [c.298]

Построение линии пересече1ШЯ поверхностей многогранника и тела вращения сводится к построению линий пересечения плоскостей, принадлежащих многограннику, с гюверхностью тела врагцения ( 47). Но сначала надо найти те точки, в которых ребра м1югогранника пересекают поверхность тела вращения ( 52). В этих точках встречаются линии пересече1п1я двух смежных граней многогранника с поверхностью вращения. После этого можно приступать к построению кривых по очереди в плоскости каждой грани.  [c.305]

При построении линий пересечения многогранника с поверхностью вращения в качестве поверх1юсти-посредника используют плоскость, которую располагают так, чтобы она пересекла поверхность вращения по ее образующим или окружности. В табл. 6 приведены возможные положения плоскостей-посредников для простейших поверхностей вращения.  [c.52]

Так как линии пересечения каждой из вспомогательных проецирующих плоскостей с данной поверхностью и с данной секущей плоскостью являются конкурирующими линиями, то построение точек линии пересечения поверхности с плоскостью производится по существу тем же способом кон-курируюи их линий, который ранее применялся нами при решении позиционных задач с прямыми, плоскостями и многогранниками.  [c.150]

Построение точек пересечения прямой с поверхностью многогранника сводится к построению линии пересечения многогранника проецирующей плоскостью, в которую заключают данную прямую. На рисунке 6.11 приведено построение проекций е, е и/ ,/точек пересечения прямой с проекциями т п, тп с боковыми гранями пирамиды. Пирамида задана проекциями s s вершины и а Ь с, ab основания. Прямая MN заключена во вспомогательную фронтально-проецируюшую плоскость Г(Г ). Горизонтальные проекции в и/искомых точек построены в пересечении проекции тп с горизонтальными проекциями 1—2 и 2—3 отрезков, по которым плоскость Т пересекает боковые грани пирамиды. Фронтальные проекции е и / определены по линиям связи.  [c.80]

На рис. 153, а показан пример построения проекций линии пересечения поверхностей правильной треугольной пирамиды, стоящей на плоскости проекций Н, и прямой треугольной призмы, основание которой расположено в плоскости проекций W. Профильная проекция показывает, что поверхность призмы полностью пересекает поверхность пирамиды, и, следовательно, имеем две ломаные лиции пересечения. Более того, устанавливаем, что поверхность призмы пересекается с левой и правой боковыми гранями пирамиды, а задняя грань пирамиды в пересечении не участвует. Следовательно, линии пересечения представляют собой плоские фигуры — треугольники. Профильные проекции линий пересечения совпадают с профильной проекцией призмы — треугольником /" = 2"-3" = 5"-4" = 6". Для построения двух других проекций линий пересечения необходимо найти проекции точек пересечения ребер призмы с гранями пирамиды. Для определения проекций точек / и II пересечения верхнего ребра воспользуемся горизонтальной плоскостью-посредником Q. Она пересекает поверхность пирамиды по треугольнику АВС, подобному основанию. Его фронтальная проекция а Ь с лежит на следе (Ру), а горизонтальная аЬс определяется посредством линий связи. Отметив горизонтальные проекции 1 п 2 искомых точек, при помощи линий связи строим их фронтальные проекции 1 и 2. Аналогично при помощи плоскости находим проекции точек пересечения III—VI двух других ребер призмы с гранями пирамиды. Заметим, что в плоскости Рг лежит вся нижняя грань боковой поверхности призмы. Поэтому решение этой части задачи можно рассматривать как решение задачи на пересечение двух плоскостей — граней пирамиды и призмы. Соединив последовательно найденные одноименные проекции точек, получаем проекции линии пересечения поверхностей данных многогранников.  [c.151]


Построим падающую тень от шеста АВ на предметную плоскость. Для этого из точки 5 проведем луч через точку А до пересечения с продолженной его проекцией аз в точке А . Падающая тень от ш,еста изобразится отрезком аЛ. Из построения видно, что многогранник частично закроет тень от шеста на предметной плоскости и падающая тень его попадет на поверхности многогранника. Для определения тени от шеста найдем линию пересечения плоскости 55Л с многогранником. В сечении получим фигуру 12345. Падающая тень представлена в виде ломаной линии 1 2 А Тень от точки Л получится на пересечении прямой 5Л с прямой 2— . Часть тени на предметной плоскости, закрытой предметом, является мнимой, или недействительной. Таким обра-  [c.279]


Смотреть страницы где упоминается термин Построение линии пересечения поверхности многогранника с плоскостью : [c.97]   
Смотреть главы в:

Краткий курс начертательной геометрии  -> Построение линии пересечения поверхности многогранника с плоскостью



ПОИСК



Линии пересечения

Линии плоскостей

Линии поверхностей

Пересечение

Пересечение линии с линией (I П т)

Пересечение линии с поверхностью

Пересечение многогранника плоскостью

Пересечение многогранников

Пересечение плоскостей

Пересечение поверхностей

Пересечение поверхностей многогранников

Пересечение поверхностей с плоскостью

Пересечение поверхности с поверхностью (аП

Построение линии пересечения плоскостей

Построение линии пересечения поверхности с плоскостью

Построение линий

Построение линий пересечения поверхностей

Построение оси на пересечении плоскостей

Построение плоскости

Построение плоскости плоскости

Построение поверхности



© 2025 Mash-xxl.info Реклама на сайте