Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние Определение кобальта

Свойства кобальта гораздо сильнее зависят от кристаллической структуры, чем свойства большинства других элементов, так как в дополнение к обычному влиянию примесей кобальт существует в широком интервале температур в виде смеси двух аллотропических модификаций при температуре ниже 400° преобладает -модификация, выше этой температуры — а-модификация. Однако превращения Ра и а-> р происходят очень медленно, чем, вероятно, и объясняются расхождения в опубликованных данных о физических свойствах этого металла. В настоящее время известно, что большинство ранних работ, посвященных точному определению свойств, проводилось на образцах с содержанием кобальта не выше 93%.  [c.292]


Все элементы, растворяющиеся в железе, изменяют устойчивость феррита и аустенита. По характеру влияния на полиморфные превращения все элементы могут быть разделены на две группы. Элементы первой группы расширяют область устойчивого состояния аустенита. Они способствуют повышению критической точки Л4 и снижению точки A3. К этой группе относятся никель, марганец, медь, кобальт и азот. На рис. 82, а показана условная диаграмма состояния железа и одного из элементов первой группы. Левая ордината на диаграмме соответствует чистому железу. Содержание элемента, расширяющего область устойчивого аустенита, возрастает слева направо. По диаграмме состояния видно, что при содержании легирующего элемента свыше определенного процента сталь от комнатных температур до линии солидуса имеет структуру аустенита. Такая сталь называется аустенитной. Для придания аустенитной структуры сталь обычно легируют никелем или марганцем.  [c.160]

Металлургическая технология относится к высокотемпературным химическим процессам и заключается в многоступенчатом преобразовании исходных шихтовых материалов с определенным химическим составом в готовую продукцию — разнообразные виды сталей, чугу-нов и специальных сплавов с заданными содержанием контролируемых элементов и комплексом свойств при этом уровень потребительских свойств черных металлов зависит от физико-химических характеристик основы (для чугуна и стали — железа, для специальных сплавов — никеля и кобальта) и входящих в их состав элементов, способствующих получению более высоких показателей качества (легирующие элементы) или оказывающих на них отрицательное влияние (вредные примеси).  [c.6]

По исследованию влияния раздельного и комплексного легирования хромом, кремнием, алюминием, медью, кобальтом, ванадием и молибденом на механические свойства железомарганцевых сплавов большой фундаментальностью отличаются работы А. А. Баранова и И. Ф. Ткаченко [77, 78, 145, 146]. Ими установлены качественные и количественные зависимости между содержанием легирующих элементов, фазовым составом, его стабильностью при деформации и механическими свойствами. Еще раз подтверждена решающая роль фазового состава в обеспечении определенного уровня механических свойств.  [c.106]

Концентрация сернокислого никеля, борной кислоты и формальдегида не оказывает влияния на эффект сглаживания. Сглаживающими добавками являются кобальт и соли муравьиной кислоты, концентрация которых должна поддерживаться на определенном уровне.  [c.222]


С целью разработки ускоренного способа фосфатирования нами и было подробно изучено влияние па процесс фосфатирования стали, а также цинка, различных нитратов и азотной кислоты [99—102]. Для исследования в качестве добавок были взяты нитраты натрия, калия, лития, аммония, магния, марганца, цинка, кадмия, кальция, стронция, бария, кобальта, никеля, алюминия, хрома и железа. Определялось их влияние на кислотность раствора К , И Г,., а также pH), скорость пленкообразования (продолжительность выделения водорода и определение его объема специальным прибором), цвет, вес, толщину, структуру (микрогеометрию) и защитные свойства фосфатной пленки. Действие каждой добавки изучалось при концен-  [c.84]

Влияние кобальта на полиморфное превращение иттрия изучено не было. Температура этого превращения (1459°) принята на диаграмме состояния по данным [51], полученным для иттрия с температурой плавления 1509°. Однако следует учитывать, что в более поздней работе [52] в результате специальных определений методом дифференциального термического анализа было показано, что темпер тура плавления иттрия высокой чистоты отвечает 1525°, температура полиморфного превращения— 1480°.  [c.699]

Указывается, что в электролитах, содержащих кобальт, достигается сглаживающее действие, т. е. осадок получается более гладким, чем основной металл. Концентрация сернокислого никеля, борной кислоты и формальдегида не оказывает влияния на эффект сглаживания. Сглаживающими добавками являются кобальт и соли муравьиной кислоты, концентрация которых должна поддерживаться на определенном уровне.  [c.43]

По данным Финка и Лэ содержание кобальта в осажденном сплаве повышается по мере уменьшения концентрации водородных ионов. Так, при увеличении значений pH от 4 до 5,5 содержание кобальта в катодном осадке (при определенных условиях) возрастает от 80 до 90%. Мы, однако, считаем, что влияние концентрации водородных ионов на состав катодного осадка может быть лишь косвенное — за счет различного изменения выхода тока по Ni и Со.  [c.106]

Остин [506] определял изменение веса кобальтникелевых сплавов с 2,5% Т1 и от 8% до 16% Рес добавкой разных количеств хрома, алюминия, молибдена, вольфрама, ванадия или кремния (по методу измерения убыли веса образцов весовым методом за 400 ч в ходе окисления при 800—1100° С в атмосфере воздуха, уделяя особое внимание сцеплению окаляны с основой. Лучшими оказались сплавы, содержавшие хром, особенно два сплава следующего состава 1) 46% N1, 25% Со, 7.5% Ре, 2,5% Т1. 20% Сг, 2,5% А1 2) 23% N1, 47% Со, 7,5% Ре, 2,5% Т1 и 2,5% А1. Какого-либо определенного вывода о влиянии одного кобальта из результатов этих измерений сделать нельзя. При более ВЫС01КИХ температурах все сплавы, содержавшие вольфрам, равно как и сплавы, близкие по составу к сплаву конал (73% N1, 17% Со, 7,5% Ре и 2,5% Т1), покрывались чешуйчатой окалиной, которая легко отделялась от основы. Присадка ферротитана в большом количестве сопровождалась образованием окалины, которая отслаивалась при охлаждении и хранении образцов. На сплавах с содержанием 2% V окалина оплавлялась.  [c.343]

После охлаждения образцы по грани 8 х 35 мм шлифовали, исследовали их структуру на металлографическом микроскопе МИМ-8М и по методу Глаголева определяли объемное содержание связующего сплава по длине образцов. Распределение меди и кобальта по длине образцов исследовали методом локального рентгеноспектрального анализа на установке Микроскан-5 . Облучение образцов проводили электронным зондом длиной 1000 и шириной 2 мкм. Это позволило замерять усредненную интенсивность рентгеновского излучения исследуемых элементов и избежать влияния структуры сплава (зернистости) на измерение интенсивностей. Пять участков измерения интенсивностей располагались на грани 8 X 35 жж по линии, перпендикулярной продольной оси грани, расстояние между этими линиями составляло 0,5 мм. В образцах, контактировавших с расплавом кобальта, количественное содержание связуюш,его металла находили также путем сравнения отношений интенсивностей кобальта и вольфрама (/ o//w) с отношением интенсивностей этих элементов в эталонах. Абсолютная ошибка определения содержания кобальта составляла 0,5 об. %. Разность результатов определения содержания связующего металла по методике Глаголева и путем измерения отношений интенсивностей не превышала 0,8 об.%.  [c.95]


Влияние активных легирующих металлов на процесс образования пассивирующей пленки отличается От того влияния, которое они оказывают на процесс активного растворения. Хром и титан в сильных средах окисляются при более высоком потенциале, чем железо, кобальт или никель, являющиеся основами сплавов типа металл — металлоид, и при своем охлаждении образуют пассивирующиеся пленки с высокими защитными характеристиками. В сплавах, содержащих хром и титан, пассивация наступает только тогда, когда концентрация хрома и (или) титана в образующейся поверхностной пленке превышает определенную величину. Это подтверждается и результатами анализа химического состава пленки, возникающей на поверхности аморфного сплава Со—Сг—20В при различном содержании хрома.  [c.272]

Отметим что приведенная схема не охватывает всего многообразия возможных вариантов влияния легирующих элементов на кригические точки железа я, следовательно на вид диаграммы железо — легирую лций элемент Так, хром молибден алюминии, ванадий относящиеся ж элементам замыкающим v область вначале понижают критические точки Ai и Аз и только начиная с определенной концентрации начинают яовышать точку Аг Кобальт способствующий получению открытой области вначале повышает критическую точку Аз  [c.10]

Так, на основании литературных данных и ГОСТ 12348—66 в 1976 г. в отраслевую систему были внесены четыре серии СО высшей точности с аттестованным содержанием марганца в сталях для учета влияния на результаты измерений таких элементов, как хром, вольфрам и кобальт. Впоследствии было показано, что фотометрическая методика определения массового содержания марганца в сталях может использоваться без предварительного отделения мешающих компонентов в диапазоне 0,05 — 15 % Мп и, следовательно, для дифференциальной аттестации содержания марганца в государственных СО для химического и спектрального анализа достаточно одной серии СО вьюшей точности.  [c.97]

Очевидно, химическую коррозию подшипников содержащимися, в масле сернистыми соединениями можно объяснить аналогичным механизмом. Наличие в топливе серы имеет решающее значение для коррозионного состояния работающего двигателя. Сернистый и серный ангидриды, образующиеся при сгорании топлива, конденсируются в микрослое влаги в зоне поршень — цилиндр, прорываются в картер вместе с газами и водой и конденсируются в масле. Повышение содержания серы в топливе с 0,2 до 0,9—1% вызывает увеличение износа гильз цилиндров на 30—40% и поршневых колец на 10%. Велико также влияние pH масляной среды на коррозионные свойства масла и связанные с этим процессы изнашивания деталей двигателя [77, 87, 95, 103]. Испытания, проведенные на дизеле 1 Ч 10,5/13 мощностью 7,3 кВт при 150 рад/с, с определением износа верхнего поршневого кольца, активированного вставками из радиоактивного кобальта, показали, что с увеличением щелочности масла скорость изнашивания уменьшается,, а затем остается постоянной [95, 103]. Щелочность масла, pH масляной среды обеспечивают, как правило, зольные или беззольные моющие присадки к маслам. Многие маслорастворимые ингибиторы коррозии имеют кислый характер (жирные кислоты, СЖ1С ангидриды и эфиры алкенилянтарных кислот и др.), поэтому при. введении их в масла необходимо следить, чтобы общая щелочность масла была не ниже 0,8—1 мг КОН/г.  [c.67]

Прокаливаемость - это глубина проникновения закаленной зоны, т.е. способность стали закаливаться на определенную глубину. За глубину закаленной зоны принимают расстояние от поверхности до слоя, где в структуре будет примерно одинаковое количество мартенсита и троос-тита. Прокаливаемость зависит от химического состава стали, размеров деталей и условий охлаждения. С увеличением содержания углерода до 0,8% прокаливаемость стали увеличивается. При дальнейшем увеличении углерода прокаливаемость несколько снижается. Увеличению прокаливаемости также способствует укрупнение зерен аустенита при нагреве под закалку. Нерастворимые частицы, неоднородность аустенита и другие факторы, которые уменьшают устойчивость переохлажденного аустенита, уменьшают прокаливаемость. Все легирующие элементы, за исключением кобальта, увеличивают прокаливаемость. При комплексном легировании полезное влияние отдельных элементов на прокаливаемость взаимно усиливается.  [c.81]

Содержание кобальта в осажденном сплаве повышается по мере уменьшения концентрации водородных ионов. Так, при увеличении значений pH от 4 до 5,5 содержание кобальта в катодном осадке (при определенных условиях) возрастает от 80 до 90%. Мы, однако, считаем, что влияние концентрации водородных ионов на состав катодного осадка может быть лишь косвенным вследствие различного изменения выхода по току по никелю и кобальту. Потенциалы осаждения кобальта и никеля практически не зависят от концентрации водородных ионов в электролите, поэтому следует ожидать, что при устранении влияния диффузии (т. е. при наличии достаточно инте -сивного перемешивания) состав катодного осадка не будет зависеть от концентрации водородных ионов, подобно тому, как это было установлено Глесстоном для случая осаждения железоникелевых сплавов.  [c.165]


Смотреть страницы где упоминается термин Влияние Определение кобальта : [c.210]    [c.102]    [c.102]    [c.454]   
Машиностроение Энциклопедический справочник Раздел 2 Том 3 (1948) -- [ c.104 ]



ПОИСК



Влияние Определение

Кобальт

Кобальтит



© 2025 Mash-xxl.info Реклама на сайте