Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние Коррозионная стойкость

Увеличение содержания углерода оказывает наибольшее влияние на предел пропорциональности, повышающийся примерно на 50% при увеличении содержания углерода от 0,065 до 0,17%. Предел прочности и предел усталости повышаются при этом всего на 18%. На удлинение и сужение поперечного сечения углерод оказывает слабое влияние. Коррозионная стойкость при повышении содержания углерода в стали умень-  [c.9]


Золото 216, 226 Зона термического влияния коррозионная стойкость 540 чувствительность к МКК 540 Зонд водородный 620, 621  [c.625]

Если электролитом является вода, то обильный подвод к корродирующему металлу кислорода может сильно замедлить протекание анодного процесса вследствие наступления пассивности металла, что приведет к большой анодной поляризации и повышению коррозионной стойкости металла при преобладающем влиянии анодного процесса (см. с. 305).  [c.243]

Отрицательный разностный эффект проявляется, когда Уме)обр . Vj,. Этот эффект имеет практическое значение, так как отвечает повышенной склонности металла к коррозии под влиянием катодный контактов и более сильному влиянию катодных примесей на коррозионную стойкость металла.  [c.296]

Гетерогенность сложно влияет на коррозионную стойкость сплавов. Довольно распространенное мнение о том, что гетерогенность является первопричиной электрохимической коррозии металлов и что любые (или только катодные) включения приводят к уменьшению коррозионной стойкости металлов, неверно. Первопричина электрохимической коррозии металлов, как мы уже указывали (см., например, с. 148),— их термодинамическая неустойчивость в данных условиях коррозии. Что же касается влияния гетерогенности на коррозионную стойкость металлов, то следует отметить следующие основные случаи  [c.330]

Влияние анодной структурной составляющей сплава на коррозионную стойкость зависит от характера распределения анодной фазы в сплаве  [c.330]

Влияние катодной структурной составляю щей сплава на коррозионную стойкость зависит от характера контроля коррозионного процесса  [c.331]

Коррозионные исследования рекомендуется проводить одновременно, в связи с трудностью в ряде случаев точного воспроизведения всех условий, и ставить их как сравнительные исследования коррозионную стойкость новых сплавов сравнивать со стойкостью наиболее распространенных и хорошо изученных сплавов, эффективность противокоррозионного легирования определять сравнением с коррозионной стойкостью нелегированного металла, защитный эффект замедлителей коррозии оценивать по скорости коррозии металла в электролите с добавкой замедлителя и без нее, влияние напряжений и деформаций на коррозионный процесс оценивать относительно коррозии металла в их отсутствии и т, д.  [c.431]

Как было указано, содержание небольших количеств кремния в конструкционных углеродистых сталях и чугупах не оказывает существенного влияния на коррозионную стойкость. Только при увеличении его содержания до 14—15% сплавы становятся коррозионностойкими во многих агрессивных средах.  [c.239]


Рис. 15.2. Влияние Сг и С на коррозионную стойкость хромистых сталей в атмосфере Рис. 15.2. Влияние Сг и С на <a href="/info/543715">коррозионную стойкость хромистых сталей</a> в атмосфере
Рис. 15.5. Влияние температуры отпуска на коррозионную стойкость хромистых сталей (пунктир означает число точек на каждом образце после закалки) Рис. 15.5. <a href="/info/222925">Влияние температуры</a> отпуска на <a href="/info/543715">коррозионную стойкость хромистых сталей</a> (пунктир означает число точек на каждом образце после закалки)
В марочнике все данные во коррозионной стойкости указаны в соответствии с ГОСТ 9.908—85 по глубине проникновения коррозии на допустимую (заданную) глубину с учетом влияния среды, температуры, длительности испытания. Коррозионная стойкость металла оценивается по скорости проникновения коррозии металла, т. е. уменьшению толщины металла вследствие коррозии, выраженному в линейных единицах, к единице времени (мм/год).  [c.9]

Малые добавки- в низколегированных сталях не оказывают заметного влияния на скорость общей коррозии в воде и почве, однако состав стали играет большую роль в работе гальванических пар, определяющих коррозионную стойкость при гальванических контактах. Например, в большинстве природных сред стали с малым содержанием никеля и хрома являются катодами по отношению к углеродистой стали вследствие повышения анодной поляризации. Причина этого объяснена на рис. 6.15. И углеродистая, и низколегированная сталь, взятые в отдельности, корродируют с приблизительно одинаковой скоростью / ор, ограниченной скоростью восстановления кислорода. При контакте изначально различные потенциалы обеих сталей приобретают одно и то же значение гальв-  [c.127]

Влияние коррозионного процесса на усталость выражается главным образом в ускорении пластической деформации, сопровождающейся образованием выступов и впадин. Именно поэтому разрушение от коррозионной усталости не является результатом аддитивного действия коррозии и усталости, а всегда больше их суммы. Такое влияние коррозии объясняет также, почему уровень устойчивости к коррозионной усталости в большей степени определяется коррозионной стойкостью, чем прочностью на растяжение. При низкой частоте нагружения предел коррозионной усталости снижается, так как увеличивается время коррозионного воздействия за один цикл [81]. КРН и коррозионная усталость имеют разные механизмы, поэтому чистые металлы, устойчивые к КРН, подвержены действию коррозионной усталости в той мере, в какой они подвержены общей коррозии.  [c.163]

Холодная деформация любой нержавеющей стали обычно оказывает меньшее влияние на стойкость к общей коррозии, если при обработке не достигается температура, достаточная для протекания диффузионных процессов. Фазовые изменения, вызываемые холодной обработкой метастабильных аустенитных сплавов, не сопровождаются существенным изменением коррозионной стойкости . К тому же закаленная аустенитная нержавеющая сталь (с гранецентрированной кубической решеткой), содержащая 18 % Сг и 8 % Ni, имеет примерно такую же коррозионную стойкость, как закаленная ферритная нержавеющая сталь (с объемно-центрированной кубической решеткой), которая содержит такое же количество хрома и никеля, но меньше углерода и азота [11]. Однако, если аналогичный сплав, содержащий смесь аустенита и феррита, кратковременно нагревать при 600 °С, то возникает разница в химическом составе двух фаз и образуются гальванические пары, ускоряющие коррозию. Иными словами, различие в составе, независимо от того, чем оно вызвано, больше влияет на коррозионное поведение, чем структурные изменения в гомогенном сплаве. По-видимому, это можно отнести в целом к металлам и сплавам.  [c.302]


Жаропрочные малоуглеродистые стали на основе 2-12% хрома благодаря сравнительно низкой стоимости, высокой теплопроводности, малого температурного коэффициента линейного расширения и хорошей релаксационной способности, возможности регулирования механических свойств в широких пределах посредством термической обработки и относительно высокой коррозионно-механической стойкости являются наиболее приемлемыми и отвечают эксплуатационным требованиям, предъявляемым к конструктивным элементам технологических установок нефтеперерабатывающих и нефтехимических заводов. Повышение содержания хрома и дополнительное легирование карбидообразующими присадками оказывают положительное влияние на коррозионную стойкость этих сталей в горячих средах основных процессов переработки нефти, коррозионная активность которых прежде  [c.94]

Механизм воздействия коррозионных сред. Различают три основных механизма влияния коррозионных сред на трещино-стойкость конструкционных материалов адсорбционное понижение прочности, водородное охрупчивание и локальное анодное  [c.343]

Определение влияния легирующих элементов на коррозионную стойкость сталей  [c.89]

Делаются выводы о влиянии концентрации хрома на характерные участки анодной поляризационной кривой и коррозионную стойкость исследуемых сталей.  [c.94]

Повышение коррозионной стойкости швов в морской воде достигается использованием электродной проволоки марки Св-08ХГ2С. Структура и свойства металла шва и околошовной зоны на низкоуглеродистых и низколегированных сталях зависят от марки использованной электродной проволоки, состава и свойств ОСЕОВПОГО металла и режима сварки (термического цикла сварки, доли участия основного металла в формировании шва и фо])мы шва). Влияние этих условий сварки и технологические рекомендации примерно такие же, как и при ручной дуговой сварке и сварке под флюсом.  [c.226]

Коррозионная стойкость циркония значительно зависит от eio чистоты. Сотые доли процента углерода и азота снижают его коррозпоцную стойкость. Однако некоторые добавки нейтрализуют вредное влияние загрязнений (так, ниобий нейтрализует действие углерода, а олово — азота-). На.личие фаювого превращения позволяет воздействовать на сввйства циркониевых сп.циюв термической обработкой. Диаграммы состояния циркония со многими элементами построены, однако данных о термической обработке и совершающихся при этом структурных превращениях мало.  [c.558]

Примерами подобного влияния катодной гетерогенности на коррозионную стойкость металлов являются более легкая пасси-вируемость (при более низкой концентрации HNO3) чугуна, чем чистого железа, и повышение коррозионной стойкости хромистой  [c.318]

Тонкая обработка поверхности (тонкая шлифовка, полировка), как правило, повышает коррозионную стойкость металлов, облегчая образование более совершенных и однородных пассивных и других защитных пленок, а также повышает предел коррозионной усталости (см. с. 338). Это влияние сказывается главным образом в начальной стадии коррозии, пока не исчезает в результате коррозии металла его исходная поверхность, и имеет большое практическое значение в мягких условиях коррозии, например при атмосферной коррозии металлов. Ниже приведены данные В. О. Кренига о влиянии характера обработки поверхности углеродистой стали (0,8% С) на ее коррозионную стойкость во влажной атмосфере — время до начала коррозии, сут.  [c.326]

Следует отметить успешное применение методов математического планирования эксперимента в исследованиях влияния отдельных компонентов сплавов или примесей и совместного влияния этих элементов на коррозионное поведение сплава. Эти методы используют также для выяснения допустимого содержания примесей (метод Бокса—Уильсона), для исследований состав многокомпонентной среды — коррозионная стойкость (метод симплексной решетки Шеффе), для построения математической модели атмосферной коррозии металлов (ИФХ АН СССР).  [c.432]

Кремний оказывает благоприятное влияние на коррозионную стойкость жа1>остойких сталей в атмосфере сероводорода. Наилучшей стойкостью при 1000° С обладают ферритные стали, содержащие 25—307о Сг с добавкой 3—5% 51.  [c.155]

На рис. 152 показано влияние содержания меди на коррозионную стойкость углеродистой стали в атмосфере. Из опытов известно, что целесообразно сочетание легирования стали медью и хромом. Легирование стали небольшими количествами хрома (до 2%) повышает только ггрочиость силава. С доба[ кон хро.ма до 8% повышается стойкость стали Б газовых средах при высоки, температурах. П 1 рис. 15.3 видно, что при таком содержании хрома применение этой стали г, ус.ловиях воздействия главным образом сероводорода на различных стадиях крекинг-процесса весьма эффективно. Еще лучшие результаты в атмосфере воздуха и окнс. 1Яю-щих газов дает добавка кремния к стали, содержащей хром (рис. 154).  [c.207]

Коррозионная стойкость хромониксльмолибденомсдистых сталей в некоторых агрессивных средах, в особенности в растворах серной кислоты средних концентраций при повышенной температуре, вплоть до 80" С, довольно высока. Влияние легирующих элементов иа коррозионную стойкость этих сталей в серной кислоте сказывается различно, в зависимости от концентрации и температуры среды. Хром повышает коррозионную стойкость в 5—30%-ной серной кислоте при температуре 80 С. Никель и медь повышают коррозионную стойкост1з в 5—60%-но( 1 серной кислоте и особенно в 40—60%-ной при 80° С и в 5— 50%-ной лри температуре до 80° С. Молибден увеличивает стойкость стали в 5—70 /()-пой кислоте при 80° С и в 5—507о-ной при температуре кипения.  [c.230]


Сплавы магния. Легирование магния некоторыми элементами значительно повышает его коррозионную стойкость и жаростойкость, улучшает механическую прочность, а также технологические свойства. Так, сплавы, содержащие алюминий (до 10%), пассивируются значительно лучше, чем магний так же влияет и присадка цинка (до 3%). Наиболее эффективной нрнсадкон является марганец, введение которого в магний достаточно в пределах от 1,3 до 1,5%. Его положительное влияние объясняют повышением перенапряжения водорода и образованием пленки из гидратированной окиси марганца. При добавке марганца в сплав Mg—Л1, максимум коррозионной стойкости достигается при содержании 0,5%, Мп.  [c.274]

ТЬнкая обработка поверхности ( шлифовка, полировка ), как правило, повышает коррозионную стойкость металлов, облегчая образование более совершенных защитных пленок. Это влияние сказывается главным образом в начальной стадии коррозии и имеет большое значение в мягких условиях коррозии ( например, при атмосферной коррозии.)  [c.40]

Рис. 15,4. Влияние содержания N1 на коррозионную стойкость хромис- Рис. 15,4. Влияние содержания N1 на <a href="/info/33965">коррозионную стойкость</a> хромис-
Прирабатываемость, протнвозадпрные свойства, коррозионная стойкость, влияние на окисление масла, выносливость (последние графы таблицы) оценены по пятибалльной системе (бал.л 5 — наивысший).  [c.382]

Коррозионное поведение железа и стали в почве в некоторых отношениях напоминает их поведение при погружении в воду. Например, незначительные изменения состава или структуры стали не влияют на коррозионную, стойкость. Медьсодержащая, низколегированная, малоуглеродистая стали и ковкое железо корродируют с приблизительно одинаковой скоростью в любых грунтах [1а, рис. 3 на стр. 452]. Можно предположить, что механическая и термическая обработка не будет влиять на скорость коррозии. Серый литейный чугун в почве, как и в воде, подвергается графитизации. Влияние гальванических пар, возникающих при сопряжении чугуной или сталей разных составов, значительно, как и при погружении в воду (см. разд. 6.2.3).  [c.181]

Моннартц [7] в Германии был, по-видимому, первым, кто установил, что для придания сплаву пассивных свойств, его необходимо легировать по крайней мере 12 % Сг. В 1908 г. он начал исследования химических свойств сплавов Сг—Ре, а в 1911 г. подробно изложил их результаты. В его работе описано благотворное влияние на коррозионную стойкость окислительных сред по сравнению с восстановительными, необходимость поддержания в сплаве низкого содержания углерода и влияние небольших количеств легирующих элементов (например, Ti, V, Мо, W).  [c.295]

Для улучшения механических свойств в алюминий в качестве легирующих добавок обычно вводят медь, кремний, магний, цинк и марганец. Из них марганец может заметно повысить коррозионную стойкость деформируемых и литейных сплавов, потому что образуется МпА способный связывать железо в интер-металлид состава (MnFe)Ale. Последний в плавильной ваннё оса-ждается в виде шлама, и таким образом уменьшается вредное влияние небольших примесей железа на коррозионную стойкость [25]. Так как марганец не образует подобных соединений с кобальтом, медью и никелем, то не следует ожидать, что добавка марганца устранит отрицательное влияние этих металлов на коррозионное поведение сплава.  [c.352]

Стали типа 15Х5М относятся к числу термически стабильных. Однако при длительном воздействии высокой температуры в сварных разнородных соединениях могут образовываться переходные прослойки, обусловленные диффузионно м перераспределением в них диффузионно-подвижных Э1 с,ментов. Исследования, проведенные Н.М. Королевым во ВНИИнефтемаше, показали, что интенсификацию диффузионных процессов вызывают циклические термические напряжения, обусловленные различием температурных коэффици-ешов линейного расширения аустенитного шва и основного металла. Помимо термических напряжений действуют также напряжения, возникающие вследствие наличия закаленных участков в околошовных зонах. Мартенситная пересыщенная структура закалки всегда обладает более высокой свободной энергией, чем равновесные фазы с таким же номинальным составом, т.е. околошовные зоны термического влияния закаливающейся стали характеризуются более структурнонапряженным состоянием. Как известно, напряженное состояние металла значительно влияет на скорость диффузионных процессов и их коррозионную стойкость.  [c.155]

Основой этой фазы является металлическое соединение РеСг, которое устойчиво в широком интервале температур, защитные свойства пленки различных толщин весьма стабильны. Влияние хрома на окалностойкость заметно проявляется начиная с содержания хрома примерно 5%. Хромистые стали с содержанием от 4 до 6% Сг принято называть полужаркостойкими, так как из жаростойкость ниже, чем у сталей с 12% Сг. Эти стали обладают зна-чительрюй коррозионной стойкостью, высокой технологичностью и повышенной прочностью.  [c.84]

На процесс коррозии аустенитной стали при действии механических напряжений оказывают совместное влияние два основных фактора выделение а-фазы пониженной коррозионной стойкости с образо--ванием электрохимической гетерогенности (неоднородности) металла и повышение энергии кристаллической решетки (механохимический эффект), в результате чего облегчаются анодная и катодная полуреак-ЦИИ /7/.  [c.79]


Смотреть страницы где упоминается термин Влияние Коррозионная стойкость : [c.404]    [c.270]    [c.535]    [c.330]    [c.399]    [c.427]    [c.129]    [c.182]    [c.200]    [c.215]    [c.220]    [c.381]   
Машиностроение Энциклопедический справочник Раздел 2 Том 4 (1947) -- [ c.113 ]



ПОИСК



Стойкость коррозионная



© 2025 Mash-xxl.info Реклама на сайте