Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Резонанс рассеяния

Как правило, резонансы рассеяния наблюдаются для легких ядер, которые характеризуются большим расстоянием между уровнями и, следовательно [см. формулу (35.14)], большой нейтронной шириной Гп. Например, упомянутый выше резонанс рассеяния для Мп имеет Г = 20 эв, которая во много раз превосходит радиационную ширину Г ". У тяжелых ядер ярко выраженные резонансы рассеяния наблюдаются в тех случаях, когда ядра являются магическими по числу содержащихся в них нейтронов (трудность присоединения добавочного нейтрона, т. е. относительная малость Г-i).  [c.346]


Мы обсудили вопрос о состояниях в простых металлах, для которых теория возмущений может служить обоснованным приближе нием. Обсудили мы и происхождение связанных состояний. Некоторые дополнительные сложности возникают, когда имеются резонансы рассеяния. Они появляются для -состояний переходных и благородных металлов. К изучению этого случая мы сейчас и обратимся.  [c.211]

На рис. 62 представлен второй множитель этого выражения в зависимости от г для трех различных значений у. Можно видеть, что с уменьшением демпфирования кривые на рисунке приобретают все более и более четко выраженный резонансный пик (г —0). а также что лишь вблизи резонанса рассеяние энергии возрастает с уменьшением демпфирования. Для точек, удаленных от резонанса, рассеяние энер ГИИ уменьшается с уменьшением затухания.  [c.84]

Если рассеяния механической энергии нет и вынужденные колебания вызываются синусоидальной возмущающей силой, то амплитуда вынужденных колебаний при резонансе в системе, движение которой определяется линейным дифференциальным уравнением с постоянными коэффициентами, возрастает прямо пропорционально времени.  [c.309]

Резонанс возникает и при наличии сил, вызывающих рассеяние механической энергии, если это рассеяние не превышает ее положительного приращения, вызванного действием возмущающей силы.  [c.310]

Потенциальное рассеяние нейтронов п, п ). Для тепловых нейтронов (( 0,02 эв), если вблизи нет резонанса, все величины в формуле Брейта—Вигнера (УП.ЗЗ) можно считать постоянными по сравнению с шириной Г . При рассеянии на ядре медленных нейтронов в случае, когда вблизи нет резонанса, множитель Г входит дважды в выражение сечения (VII.33) и зависимость сечения а от энергии, выражаемая квадратом длины  [c.282]

Третья часть книги посвящена ядерным силам и элементарным частицам. Здесь рассмотрены опыты по нуклон-нуклонным рассеяниям и свойства ядерных сил рассеяние быстрых электронов на ядрах и протоне и структура нуклонов свойства х- и я-мезонов и вопрос об изотопической инвариантности ядерных взаимодействий свойства и систематика странных частиц получение и свойства антинуклонов и других античастиц и свойства нейтрино и антинейтрино цикл вопросов, связанных со свойствами слабого взаимодействия, и, наконец, вопрос о квазичастицах (резонансах).  [c.12]

Впоследствии резонансы (в несколько другой форме) были обнаружены для многих элементарных частиц (см. 85). В настоящее время исследование резонансов является одной из наиболее важных задач ядерной физики, так как оно позволяет изучать взаимодействие между собой таких элементарных частиц (например, двух я-мезонов), для которых невозможно осуществить прямой процесс рассеяния.  [c.590]


Таким образом, максимум в сечении (я — р)-рассеяния можно истолковывать как появление нестабильной частицы — резонанса с вполне определенными свойствами массой, зарядом, спином, изотопическим спином и др. Правильность подобной интерпретации была подтверждена тем, что впоследствии Д-резонанс обнаружили не только как максимум в сечении (я — р)-рассеяния, но и как квазичастицу, рождающуюся вместе с обычными частицами или другими резонансами в (я — р)-, К — р)-и других взаимодействиях  [c.661]

Максимумы в сечениях рассеяния я-мезонов на нуклонах при энергиях 190, 600, 900 и 1300 Мэе называются нуклеины ми резонансами. Нуклонные резонансы имеют определенные значения энергии, спина, изотопического спина. Кроме того, они обнаруживаются в различных процессах.  [c.162]

Первый, наиболее прямой способ заключается в изучении-взаимодействия пучков странных частиц с водородной или ядерной мишенью. Этот способ широко применяется для изучения взаимодействия /С -мезонов, пучки которых имеются на. современных ускорителях. Результаты, получаемые этим способом, аналогичны, результатам изучения (я—Л )-рассеяния-(зависимость сечений от энергии /С-мезонов и изоспина взаимодействующих частиц, выделение максимумов и сопоставление их с известными резонансами (нестабильными частицами).  [c.191]

Правой части неупругого спектра видны максимумы, соответствующие возбуждению нуклона, т. е. образованию нуклонных резонансов (подробнее о них см. 19), левая же его часть, соответствующая глубокому неупругому рассеянию, имеет непрерывный характер.  [c.277]

Таким образом, экстраполируя экспериментальное значение а ((о, Д ), найденное по формуле (20.1) для положительных значений Д2 в нефизическую область реакции (Д2= —1), можно получить сечение рассеяния свободного я-мезона на свободном я-мезоне. Типичные результаты показаны на рис. 173 (для реакции я р— л-я+п) и на рис. 174 (для реакции я р—нл-я°р). Из рисунков видно, что в районе р- и /-резонансов близко  [c.286]

Выше уже указывалось, что кристаллы с точечными дефектами в определенном количестве могут быть термодинамически равновесны. Однако в ряде случаев возникают и избыточные неравновесные точечные дефекты. Различают три основных способа, с помощью которых дефекты могут быть созданы быстрое охлаждение от высоких до сравнительно низких температур (закалка) дефектов, которые были равновесны до закалки, пластическая деформация, облучение быстрыми частицами. Возникающие в этих случаях типы точечных дефектов, как правило, те же, что и вблизи термодинамического равновесия. Однако относительные доли каждого типа дефектов могут существенно отличаться от характерных для равновесия. Поэтому в изучении дефектов решетки особую роль играют экспериментальные методы, такие, как изучение электросопротивления (зависимости его от температуры и времени), рассеяния рентгеновских лучей и нейтронов, зависимости теплосодержания от температуры и времени, механических свойств, ядерного гамма-резонанса, аннигиляции позитронов и т. д.  [c.235]

Поэтому основное состояние 486 должно проявлять себя как резонанс в рассеянии а-частицы на а-частице  [c.138]

Параллельно радиационному захвату, конечно, обязательно происходит и упругое рассеяние нейтронов. Сечение упругого рассеяния в окрестности резонанса имеет в соответствии с (4.43) вид  [c.140]

Даже в окрестности резонанса форма сечения может отличаться от брейт-вигнеровской (4.43). Это наблюдается в том случае, когда, например, наряду с резонансным рассеянием имеется большой фон нерезонансного рассеяния. Для примера на рис. 4.12 приведено сечение упругого рассеяния медленных нейтронов на ядре изотопа урана Асимметричная форма резонансных пиков есть  [c.144]

Как мы указывали в гл. 111, 5, для теории обобщенной модели большой интерес представляет идентификация состояний, по структуре представляющих собой нуклон над возбужденным остовом. Изучение аналоговых резонансов позволило обнаружить ряд таких состояний. Для примера на рис. 5.15 приведены кривые зависимости сечения упругого и неупругого рассеяния протонов на ядре Интересной особенностью этих кривых  [c.198]

Одной из важнейших и характернейших особенностей сильных взаимодействий является их ярко выраженный резонансный характер. Сечения рассеяния адронов, как правило, не монотонно изменяются с ростом энергии, а имеют многочисленные отчетливые резонансы. Из теории ядерных реакций мы знаем, что резонансам в сечении соответствуют нестабильные состояния. Согласно (2.54) среднее время жизни такого нестабильного состояния обратно пропорционально энергетической ширине Г-резонанса. Поэтому исследование резонансных столкновений в значительной мере является исследованием спектра масс и структуры нестабильных адронов. В этом пункте будут изложены основные экспериментальные данные об адронных резонансах, методы их обнаружения, распадные свойства резонансов.  [c.363]


В резонансной области полные сечения 0( в среднем наиболее велики и наименее регулярны. Многие из этих полных сечений имеют отчетливые резонансы с ширинами Г от десятков до сотен МэВ. Значительную долю полного сечения (десятки процентов) составляет упругое рассеяние a p. При отсутствии экзотермических  [c.374]

При стремлении энергии нейтрона к нулю сечение упругого рассеяния стремится к константе, а сечение радиационного захвата растет в соответствии с законом 1/ . Поэтому для очень медленных нейтронов возрастает не только абсолютная, но и относительная роль радиационного захвата. В области густых резонансов интенсивности рассеяния и захвата определяются соответствующими ширинами Г и Гу (гл. IV, 7). Поскольку для каждого ядра радиационная ширина примерно постоянна, а нейтронная ширина Г растете энергией, то для резонансных нейтронов преобладает радиационный захват, а для промежуточных — упругое рассеяние. Для быстрых нейтронов упругое рассеяние по-прежнему играет важную роль. Кроме того, при повышении энергии нейтронов становятся возможными различные эндотермические процессы.  [c.534]

Демпфирующим свойствам материалов посвящена большая литература. Отметим литературные источники, в которых приводится библиография по этому вопросу Пановко Я- Г, Внутреннее трение при колебаниях упругих систем. — М. Физматгиз, 1960 Писаренко Г. С. Рассеяние энергии при механических колебаниях. — Киев Наукова думка, 1962 Писаренко Г. С., Яковлев А. П., Матвеев В. В. Вибропоглощающие свойства конструкционных материалов (справочник). Киев Наукова думка, 1971. Помимо основных понятий о демпфирующих свойствах материалов обсуждены основные методы определения характеристик рассеяния энергии при продольных, крутильных и изгибных колебаниях (энергетический, термический, статической петли гистерезиса, динамической петли гистерезиса, кривой резонанса, фазовый, резонансной частоты, затухающих колебаний, нарастающих резонансных колебаний) и приведена информация о демпфирующих свойствах многих материалов.  [c.68]

Существенным в проблеме прохождения системы через резонанс является способ учета рассеяния энергии. Последний основывается на тех или иных гипотезах.  [c.133]

Многие лазеры обеспечивают излучение на различных длинах волн, которое может как лежать вне полосы поглощения излучаемых молекул, так и совпадать с ней для получения эффекта резонанса комбинационного рассеяния.  [c.218]

В случае, когда упругость и плотность материала сферы много меньше упругости и плотности 01фужающей среды /типи пшм примером такого тела является газовый пузырек в жидкости/, то низший резонанс рассеянного поля /см. рис. 3.9/ смещается влево, в область , и определяется, в основном, упругостью ма-.  [c.82]

Максимумы в сечениях рассеяния л-мезонов на нуклонах при энергиях 190, 600, 900 и 1300 Мэе называются нуклонными резонансами. Нуклонные резонансы имеют строго определенные значения энергии, спина, изотопического спина. Кроме того, они обнаруживаются в различных процессах. Так, например, резонанс при Г,г = 190 Мэе наблюдается также при фоторождении л-мезонов.  [c.589]

Второй том посвящен физике элементарных частиц и их взаимодействиям. В книге рассмотрены нуклон-нуклонные взаимодействия при низких и высоких энергиях и свойства ядерных сил, изложена теория дейтона и элементы мезонной теории рассмотрены опыты по упругому и неупругому рассеянию электронов на ядрах и нуклонах и обсуждается проблема нуклон-ных форм-факторов подробно изложена физика лептонов, я-мезонов и странных частиц рассмотрена физика антинуклонов и других античастиц, а также антиядер изложены систематика частиц и резонансов на основе унитарной симметрии н цикл вопросов, связанных со свойствами слабых взаимодействий.  [c.6]

Поражает как обилие элементарных частиц, так и их разнообразие. Резко различаются между собой их массы, времена жизни (напомним, что это далеко не все характеристики частиц). Почти у каждой частицы имеется ее двойник — античастица, в связи с чем их число сразу же должно быть увеличено почти вдвое. В ряде случаев част1щы имеют различные зарядовые состояния, например под символом кси-гиперона 2 скрываются две частицы — нейтральный и отрицательно заряженный кси-ми-нус-гиперон S , под символом К следует понимать две частицы — нейтральный каон и положительно заряженный АГ -ка-он. Больпше группы частиц объединены под названием резонансы . Характерным для этих частиц является их малое время жизни ( 10 с), все они рассматриваются как различные возбужденные состояния одной частицы, например нуклона. И здесь символы отдельных резонансов больше указывают на их существование, нежели на действительную картину наличия множества частиц, принадлежащих данному резонансу и отличающихся друг от друга зарядовыми состояниями, массой и временем жизни. Так, нуклонный резонанс А, открытый в 1951 г. Э. Ферми в опытах по рассеянию пионов на протонах, включает в себя следующие частицы.  [c.186]

Отличительной особенностью ядерных реакций с образованием составного ядра при малых энергиях нейтронов (менее 1 МэВ) является наличие резонансов в энергетической зависимости сечений. Резонансное рассеяние обусловлено энутренней областью ядра, в то  [c.1102]

Для описания упругого рассеяния, осредненного по резонансам, используется оптическая модель, в которой ядро трактуется как сплошная среда, способная преломлять и поглощать дебройлевские волны падающих на него частиц.  [c.133]

В областях б) и в) дебройлевская длина волны налетающей частицы уже намного меньше геометрических размеров адрона, к Rq. Резонансы еще существуют и в этой области, хотя и в меньшем количестве. Но на ход полного сечения с энергией резонансы уже практически не влияют, поскольку в рассеянии участвует большое число парциальных волн, так что вклад каждой отдельной волны мал даже в ее резонансе. В результате в области б) полные сечения плавно зависят от энергии. Сама зависимость оказывается очень простой каждое сечение 0/ монотонно выходит на асимптотическую константу (см. рис. 7.37). Именно в этой области адроны ведут себя как черные шары (см. п. 1). В период исследований в асимптотической области, когда ускорителей более высоких энергий еще не было, складывалось впечатление, что асимптотическое постоянство полных сечений является окончательным . Однако в 1971 г. был открыт серпуховский эффект отчетливого роста полного сечения К" р, начиная с энергий 5 ГэВ в СЦИ (С. П. Денисов и др.). Экспериментальные исследования при более высоких энергиях привели к выводу, что серпуховский эффект явился первым указанием на существование качественно новой области энергий адрон-  [c.375]


Поскольку таблицы Холле рассчитываются без учета демпфирований в системе, они не могут служить для прямого определения величин амплитуд в резонансных зонах. Однако известно, что в самом резонансе в системе имеется раздельное уравновешивание группы значительных инерционных и упругих сил и группы относительно малых сил возбуждения и трений. Первая группа сил определяет основное сходство резонансных форм колебаний с собственными формами колебаний, т. е. приближенное равенство их относительных соотношений (так называемый принцип Видлера). Вторая же группа сил определяет при этом величину этих амплитуд. Это позволяет производить приближенную оценку их, с достаточной для практики точностью, по таблицам, использованным при нахождении форм собственных колебаний. Резонансные колебания отдельных масс считаются синфазными, что при строгом рассмотрении противоречит возможности передачи колебательной энергии от мест возбуждения к местам ее рассеяния, рассредоточенным по всей системе.  [c.79]

При наличии тех же условий более точные данные получаются из опытов с вынужденными колебаниями, особенно в резонансных условиях. Здесь легче отделяется влияние других видов трения, исследуется их нелинейность, получаются более надежные и легко повторимые замкнутые петли гистерезиса при больших деформациях (вплоть до захода в пластическую зону), а при очень малых трение оценивается все же по измерениям самих деформаций, а не их малых разностей, более высшего порядка в методе затухающих колебаний. Искомые силы трения могут также измеряться в резонансных условиях и по величинам сил возбуждения, при возможности контроля близости к резонансам еще и путем оценки фаз колебаний. Фазы, силы и перемещения дают возможность определения рассеяния, а измерения мощности возбуждения могут дать еще дополнительные источники контрольных самостоятельных определений. Мало используемыми преимуществами являются возможности изучения промежуточных петель гистерезиса при нолигармоническом возбуждении и измерение выделяемого тепла,  [c.87]


Смотреть страницы где упоминается термин Резонанс рассеяния : [c.149]    [c.309]    [c.309]    [c.465]    [c.472]    [c.344]    [c.394]    [c.329]    [c.718]    [c.1102]    [c.139]    [c.198]    [c.198]    [c.305]    [c.217]   
Техническая энциклопедия том 24 (1933) -- [ c.0 ]



ПОИСК



Нестабильные частицы (резонансы лл-Рассеяние

Резонанс

Фазовый анализ (я—А)-рассеяния. Диаграмма Аргана Формулы Брейта—Вигнера для резонанса

Частотные характеристики элементов матрицы рассеяния и условие резонанса



© 2025 Mash-xxl.info Реклама на сайте