Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Полупроводниковый переход

Избыток электронов и дырок, временно образовавшихся в полупроводниках под действием излучения, увеличивает объемную удельную электропроводность материала. Однако наиболее резко чувствительность к облучению выражена в полупроводниковых переходах.  [c.284]

Наиболее заметно влияние неравновесных носителей, вызванных ионизирующим излучением, проявляется в полупроводниковых переходах, поскольку переход разделяет электронно-дырочные пары, образовавшиеся вблизи него. Обратный ток в полупроводниковом переходе зависит главным образом от концентрации неосновных носителей вблизи перехода, а электропроводность, наоборот, зависит от основных носителей. Ионизирующее излучение, которое способно увеличить концентрацию основных носителей и, следовательно, электропроводность на пренебрежимо малую величину, может увеличить концентрацию неосновных носителей на несколько порядков. Если, например, область базы кремниевого плоскостного полупроводникового прибора имеет концентрацию основных носителей 2-10 на кубический сантиметр, то эта область при комнатной температуре содержит около 1 10 неосновных носителей на кубический сантиметр. Если излучение вызывает увеличение концентрации основных носителей только на 0,1%, то концентрация неосновных носителей увеличивается до 2-10 см- , или в 200 ООО раз. В этом случае обратный ток в переходе должен увеличиться, что может отрицательно повлиять на нормальную работу прибора. Фактически ток, аналогичный фототоку, при воздействии ионизирующего излучения может наблюдаться и в неработающем приборе.  [c.312]


Если обратное напряжение превосходит допустимый предел, происходит пробой полупроводникового перехода и диод отказывает в работе. Стабилитрон представляет собой разновидность полупроводникового диода и отличается свойством полностью восстанавливать свои характеристики после того, как снято обратное напряжение, вызвавшее пробой. Состояние пробоя в стабилитроне может воспроизводиться много раз без ущерба для его работоспособности. При многократных пробоях пробивное напряжение стабилитрона не изменяется. Оно называется напряжением стабилизации.  [c.77]

В кристалле, являющемся основным элементом транзистора, имеются три области р и п, разделенные двумя полупроводниковыми переходами. У транзистора типа р—п—р одна крайняя область (эмиттер) типа р, средняя область (база) типа п, другая крайняя область (коллектор) типа р. У транзистора типа п—р—п эмиттер и коллектор типа п, а база типа р. В электрооборудовании автомобилей применяются транзисторы того и другого типа.  [c.78]

При проведении указанного цикла проверок напряжение аккумуляторной батареи прикладывают к каждому из шести полупроводниковых переходов выпрямительного блока 1 раз в прямом и 1 раз в обратном направлении и таким образом обеспечивается полный объем проверки. Испытывать выпрямительный блок можно не снимая его с крышки со стороны контактных колец при условии, что выводы фазовых обмоток статора отсоединены от блока.  [c.144]

Тепловое сопротивление между полупроводниковым переходом И корпусом, °С/Вт, не более........1,1  [c.62]

Фотоэлектрический приемник, реакция которого проявляется в возникновении фототока под воздействием излучения при напряжении, приложенном к полупроводниковому переходу в обратном направлении.  [c.63]

В открытом состоянии тиристор проводит прямой ток /пр, величина которого определяется внещней нагрузкой. Допустимое значение тока /пр не должно превышать номинального значения /пр.ном под которым понимается среднее за период значение тока при температуре полупроводникового перехода 4-120°С, температуре охлаждающего воздуха +40°С и его скорости 12 м сек.  [c.16]

ОКГ на полупроводнике. Метод возбуждения ОКГ с использованием полупроводников основан на создании фотонной эмиссии в результате инжекции электронов через полупроводниковый переход. Основное  [c.161]

Для получения когерентного излучения необходимо, чтобы полупроводниковый переход был плоским, а материал полупроводника чрезвычайно однородным. Объем диода, охлаждаемого жидким азотом, пока не превышает 1 мм (рис. 5.12).  [c.161]

Хотя эти взаимодействия во многом сходны с параметрическими процессами, давно используемыми в технике СВЧ, имеется одно существенное различие. А именно, в технике СВЧ используются локальные нелинейности (такие, как, например, в полупроводниковых переходах), в то время как в нелинейной оптике взаимодействие происходит в объеме, размеры которого существенно превышают длину волны.  [c.44]


ПОЛУПРОВОДНИКОВЫЙ ПЕРЕХОД — то же, что р — п-переход.  [c.265]

Свойства полупроводникового перехода можно кратко  [c.212]

Элементы полупроводниковой микросхемы соединяются в единую функциональную схему при помощи металлизированных проводников, которые соответствуют линиям связи в электрической принципиальной схеме. Допускается отклонение изображения металлизированного проводника на топологии по сравнению с эскизом задания. Линии перехода между проводником и контактной площадкой выполняют согласно рис. 25.15. Металлизированные проводники должны иметь минимальное количество изломов. Технологические ограничения приведены на рис. 25.41.  [c.580]

Полупроводниковый лазер генерирует когерентное излучение в результате процессов, происходящих в р-и-переходе на полупроводниковом материале. На рис. 3.8 показана схема полупроводникового лазера на арсениде галлия. Кристалл имеет размеры около 0,5...1,0 мм . Верхняя его часть 2 представляет собой полупроводник р-типа, нижняя / — п-типа, между ними имеется р-п-переход 4 толщиной около 0,1 мкм.  [c.123]

Диод полупроводниковый диффузионный — плоскостной диод, изготовленный диффузионным методом, имеет неоднородный эмиттерный слой и плавный р — п переход [3].  [c.143]

Параметрон — двоичный элемент, состояние которого определяется фазой выходного напряжения, которое может иметь одну из двух жестко фиксированных фаз, отличающихся одна от другой на 180° широко распространены параметроны на ферритовых сердечниках, разрабатываются на магнитных пленках и на полупроводниковых диодах с управляемой емкостью р—л перехода применяются в качестве логического элемента [6].  [c.150]

Тиристор триодный — полупроводниковый прибор структуры р—п—р—п, содержащий три р—п перехода и снабженный тремя выводами от крайних и одной из средних областей проводимости работает аналогично диодному тиристору, но перевод в открытое состояние может производиться при любой величине напряжения между выводами от крайних областей путем подачи в цепь управляющего электрода импульса прямого тока выключение производится так же, как и диодного тиристора, путем снятия напряжения с выводов от крайних областей в последнее время разработаны триодные тиристоры, выключение которых возможно путем подачи на управляющий электрод обратного напряжения мощные триодные тиристоры часто называют управляемыми переключателями или выпрямителями применяют в качестве контакторов в регулируемых преобразователях постоянного тока, инверторах, выпрямителях, спусковых и релаксационных схемах 13, 10].  [c.157]

Свойства р — п-перехода. Полупроводниковые приборы являются основой современной электронной техники. Они применяются в радиоприемниках и телевизорах, микрокалькуляторах и электронных вычислительных машинах. Принцип действия большинства полупроводниковых приборов основан на использовании свойств р — га-перехода.  [c.157]

Если к р — п-переходу приложено напряжение знаком плюс на область с электронной проводимостью, то электроны в п-полупроводнике и дырки в р-полупроводнике удаляются внешним полем от запирающего слоя в разные стороны, увеличивая его толщину. Сопротивление р — п-перехода велико, сила тока мала и практически не зависит от напряжения. Этот способ включения диода называется включением в запирающем или в обратном направлении. Обратный ток полупроводникового диода обусловлен собственной проводимостью полупроводниковых материалов, из которых изготовлен диод, т. е. наличием небольшой концентрации свободных электронов в р-полупроводнике и дырок в п-полупроводнике.  [c.159]

Способность р — га-перехода пропускать ток в одном направлении и не пропускать его в противоположном направлении используется в приборах, называемых полупроводниковыми диодами, для преобразования переменного тока в постоянный, точнее в пульсирующий, ток.  [c.159]

Полупроводниковый элемент имеет следующее устройство. В плоском кристалле кремния или другого полупроводника с дырочной проводимостью создается тонкий слой полупроводника с электронной проводимостью. На границе раздела этих слоев возникает р—л-переход. При освещении полупроводникового кристалла в результате поглощения света происходит изменение распределения электронов и дырок по энергиям. Этот процесс называет-  [c.304]


Фотодиод представляет собой полупроводниковую пластинку, внутри которой имеются области электронной (п-область) и дырочной (р-область) проводимости, разделенные электронно-ды-рочным переходом. Иа рис. 8.22 изображены две возможные принципиальные схемы фотодиода.  [c.442]

В полупроводниковых лазерах наиболее распространенным методом создания инверсной населенности является инжекция неравновесных носителей заряда через р-/г-переход. Электронно-дырочный переход (р-п) — это переходная область, с одной стороны которой полупроводник имеет дырочную (р) проводимость, а с другой — электронную п). Необходимо отметить, что речь идет об одном образце, а не о контакте между двумя образцами р- и rt-типа.  [c.317]

Излучение, возникающее при переходах с верхних уровней на нижние, является спонтанным. В среде с инверсной населенностью это спонтанное излучение индуцирует дополнительные переходы. Для того чтобы создать квантовый генератор, в среде с инверсной населенностью необходимо обеспечить условия автоколебательного режима. Такой режим достигается за счет помещения активной среды, т. е. вещества, в котором создается инверсная населенность, -В резонатор, выполняющий роль положительной обратной связи. Резонатор обеспечивает также пространственную и временную когерентность излучения. Простейший резонатор представляет собой два плоскопараллельных зеркала, одно из которых является полупрозрачным. В рубиновом лазере резонатором служат отполированные торцы рубинового стержня, покрытые тонким слоем металла, в полупроводниковом инжекционном лазере на арсениде галлия— это тщательно полированные боковые грани, перпендикулярные плоскости р-и-перехода.  [c.318]

Новая конструкция дает возможность монтировать непосредственно на плате приборы с большим тепловыделением, что позволяет уменьшить массу и исключает необходимость проектирования и установки теплоотводов для облегчения доступа охлаждающего воздуха. Кроме того, это приводит к снижению расходов по вен-тцляции теплопроводящих панелей. Вместе с тем, не-сл отря на использование в схеме элементов с высокой удельной мощностью, применение в плате покрытия, интенсифицирующего ее охлаждение, обеспечивает поддержание температур полупроводниковых переходов и кор-п [сов приборов на безопасных с точки зрения надеж1но-сти уровнях.  [c.243]

Ф., действие к-рого основано на внутр. фотоэффекте, представляет собой полупроводниковый прибор с выпрямляющим полупроводниковым переходом (р—п-перехо-дом), изотипным гетеропереходом или контактом металл—полупроводник (см. Контактные явления в полупроводниках). При поглоп ении оптич. излучения в таком Ф. (рис. 1,6) увеличивается число свободных носителей заряда внутри полупроводника, к-рые пространственно разделяются электрич. полем перехода (контакта). Избыток носителей заряда, возникающий по обе стороны от потенц. барьера, создаёт в, полупроводниковом Ф. (ПФ) разность потенциалов, т. с. фотоэдс. При замыкании внеш. цепи ПФ через нагрузку начинает протекать электрич. ток, В качестве материала для ПФ наиб, часто применяют Se, GaAs, dS, Ge и Si.  [c.368]

В схеме контактно-транзисторного зажигания, а также в других системах, входящих в электрооборудование автомобилей, применяются полупроводниковые диоды, стабилитроны и транзисторы. Основным элементом перечисленных приборов является кристалл германия или кремния. В кристалле полупроводникового диода имеются две области. Область п характеризуется наличием свободных электронов, а область р наличием так называемых дырок, которые притягивают к себе электроны и могут быть заполнены последними. Эти свойства областей пир достигаются посредством добавления различных присадок в основной материал кристалла. Полупроводниковый переход представляет собой граничный слой между областями кристалла пир. Действие диода в схемах электрооборудования автомобилей основано на свойстве полупроводникового перехода обладать малым сопротивлением при приложении напряжения в прямом направлении (плюс к области р, минус к области п) и большим сопротивлением при приложении напряжения в обратном направлении. Например, сопротивление диода ВА20 яри приложении напряжения в прямом направлении должно быть не более 0,3 Ом, а в обратном направлении не менее 50 000 Ом, Это свойство позволяет применять диод в качестве выпрямителя переменного тока. Проводя аналогию электрического тока с движением жидкости по трубопроводу, можно сравнить диод с клапаном (рис. 38), пропускающим жидкость в прямом направлении и запирающимся при обратном направлении напора.  [c.77]

Кристалл 3 с полупроводниковым переходом в горизонтальной плоскости выполнен в форме диска. Диоды ВА20 выпускаются двух видов с прямой и обратной полярностью. У диода прямой поляра  [c.118]

Ультразвуковая сварка обладает рядом принципиальных преимуществ. Прежде всего она не сопровол<дается в оптимальных режимах нежелательными явлениями, присущими различным видам сварки плавлением (появление трещин, поводок, резкого изменения механических свойств на границе литое ядро—основной металл, насыщение газом, образование хрупких интерметаллических фаз и т. д.). Отсутствие значительных тепловых воздействий (сварка происходит в твердом состоянии при температурах, не превышающих обычно температуру рекристаллизации металла, см. гл. 2) и небольшие изменения в металле в зоне сварки по сравнению с основным металлом делают в ряде случаев этот вид сварки единственно возможным способом соединения металлов. Традиционный и наиболее наглядный пример — это соединение фольг со значительно более толстыми деталями (например, медной фольги с толстыми пластинами алюминиевого сплава). В этом случае основной бич сварки плавлением — прожог фольги. В случае приварки металлических проводников к полупроводниковым приборам особенно важно незначительное тепловое и механическое воздействие. Ультразвуковая сварка позволяет получить, например, высококачественное соединение кремния с золотом, причем не только не происходит диффузионного насыщения золотом тонкого полупроводникового слоя, но сохраняются защитные пленки, нанесенные на кремний [13]. При термокомпрессионной сварке свойства полупроводникового перехода могут меняться и происходит разрушение защитных пленок. Следует отметить также весьма низкий по сравнению со сваркой плавлением уровень остаточных напряжений в ультразвуковом сварном соединении.  [c.74]


Наибольшее значение получили сплавы Ge и Se в различных сочетаниях, поскольку при этом возникают смежные области с разными типами электропроводности(ц-типаили р-типа), а граница этих областей п-р (р-п или р-п-р и т. д.)-переход является основой полупроводниковых приборов. Такие композиции можно получать лишь путем легирования полупроводниковых материалов высокой чистоты дозированным количеством соответствующих примесей (10 —Ю %).  [c.389]

В зависимости от примесей кремний приобретает электронную проводимость п или, наоборот, пропускает заряды с недостатком электронов, где места отсутствующих электронов условно называют дырками, то есть приобретает дырочную проводимость р. С целью получения локальных областей для элементов микросхемы формируют разделительные области р" -типа - области дырочной проводимости с повышенной концентрацией носителей. Создание элементов в полупроводниковом материале требует наличия р-и-переходов - границы между областями с электронной (и-типа) и дырочной (р-типа) проводимостью. На рис. 25.2 показана последовательность основных технологических операций изготовления ПИМС на биполярных транзисторах, получаемых по планарно-эпитаксиальной технологии (эпитаксия - процесс ориентированного наращивания атомов одного кристаллического вещества на другом). Изготовление ПИМС на биполярных транзисторах включает  [c.539]

Титан имеет довольно высокую (1668 °С) температуру плавления и плотность 4,5 г/см . Благодаря высокой удельной прочности и превосходным противокоррозионным свойствам его широко применяют в авиационной технике. В настоящее время его используют также для изготовления оборудования химических производств. В ряду напряжений титан является активным металлом расчетный стандартный потенциал для реакции + + 2ё Ti составляет —1,63 В . В активном состоянии он может окисляться с переходом в раствор в виде ионов [1]. Металл легко пассивируется в аэрированных водных растворах, включая разбавленные кислоты и щелочи. В пассивном состоянии титан покрыт нестехиометрической оксидной пленкой усредненный состав пленки соответствует TiOj. Полупроводниковые свойства пассивирующей пленки обусловлены в основном наличием кислородных анионных вакансий и междоузельных ионов Ti , которые выполняют функцию доноров электронов и обеспечивают оксиду проводимость /г-типа. Потенциал титана в морской воде близок к потенциалу нержавеющих сталей. Фладе-потенциал имеет довольно отрицательное значение Ер = —0,05В) [2, 3], что указывает на устойчивую пассивность металла. Нарушение пассивности происходит только под действием крепких кислот и щелочей и сопровождается значительной коррозией.  [c.372]

Диод лавык о-про 1е/и ый — полупроводниковый диод, работающий в режиме лавинного размножения носителей зарядов при обратном смещении электрического перехода хотя его статическая характеристика не имеет участка, соответствующего отрицательному дифференциальному сопротивлению, однако в этом режиме сопротивление в узкой области диапазона СВЧ может стать отрицательным применяется для генерации колебаний в этой области частотного диапазона [9].  [c.142]

Диод полупроводниковый — электропреобразовательный полупроводниковый прибор с одним электрическим переходом (переходами), имеющий два вывода [3, 4].  [c.143]

Светодиод полупроводниковый — излучающий полупроводниковый прибор с одним электрическим переходом (переходами), непосредственно преобразующий электрическую энергию в энергию некогерентного светового излучения (8].  [c.153]

Тиристор — электропреобразовательный полупроводниковый прибор с тремя или более р—п переходами, в вольтамперной характеристике которого имеется участок отрицательного дифференциального сопротивления и который используется для переключения тиристоры получили широкое распространение в управляемых выпрямителям и в схемах регулируемого привода различают тиристоры диодные и триодные (3, 10].  [c.156]

Транзистор — электропреобразовательный полупроводниковый прибор с одним или несколькими электрическими переходами, пригодный для усиления мощности и имеющий три или более выводов [3. 4].  [c.157]

Фотодиод — фотоэлектрический полупроводниковый прибор с одним р—п переходом, носители тока в котором возбуждаются излучением различают два режима работы — генераторный (вентильный), при котором энергия излучения преобразуется в электрическую, например, как в солнечном фотоэлементе, и фогопреобразовательный (диодный), при котором под действием излучения меняется сопротивление фотодиода [3, 4 ].  [c.163]

Фототиристор — фотоэлектрический полупроводниковый прибор с тремя или более р—п переходами, в вольтамперной характеристике которого имеется участок, соответствующий отрицательному дифференциальному сопротивлению [8].  [c.163]

Фототранэистор — фотоэлектрический полупроводниковый прибор с двумя р—п переходами, у которого обычно база не имеет электрического вывода, а носители зарядов возбуждаются лучистой энергией, падающей на базу, которая на большей своей площади имеет прозрачное покрытие для излучения в рабочем диапазоне частот используется в качестве фоторезистора, но имеет большую чувствительность включается по схеме, аналогичной схеме с обш,им эмиттером [3, 4 ].  [c.163]

Другой тип германиевых фотодиодов показан на рнс. 26.21. Он состоит, как и обычный полупроводниковый диод, из полупроводников (например, того же германия) двух типов проводимости. Образуюпгийся на границе р— -переход при подаче положительного потенциала со стороны германия /г-типа препятствует свободному прохождению тока. При освещении узкой области р— -перехода в германии /г-типа образуются пары и дырки диффундируют через р—/г-переход, вызывая возрастание тока.  [c.174]


Смотреть страницы где упоминается термин Полупроводниковый переход : [c.305]    [c.358]    [c.23]    [c.83]    [c.363]    [c.143]    [c.161]    [c.399]   
Ультразвук (1979) -- [ c.253 , c.265 ]



ПОИСК



Л полупроводниковый

Полупроводниковые лазеры переходы

Способы создания электронно-дырочных переходов силовых полупроводниковых приборов



© 2025 Mash-xxl.info Реклама на сайте