Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Охрупчивание под воздействием агрессивных

Обычно KP под напряжением определяют как совместное воздействие агрессивной коррозионной среды и растягивающего напряжения (остаточного или приложенного), приводящее к растрескиванию, имеющему макроскопически вид хрупкого разрушения. В этом определении подразумевается, что KP представляет собой явление, а не механизм,-— именно так KP и трактуется в этой главе. К таким же явлениям относится и водородное охрупчивание, которое может (но не обязательно) сопровождать KP. Водород как газ или в виде частиц, возникающих в результате химических или электрохимических реакций, может рассматриваться как агрессивный агент, способный вызывать KP. Но в процессе классических исследований водородного охрупчивания имели дело с водородом, растворенным в металле, что не характерно для коррозионных агентов. В прошлом это приводилось в качестве аргумента против связи KP с водородным охрупчиванием. Данный обзор показывает, что такой вывод не может считаться общим. Известен ряд случаев, когда водород участвует в KP, причем существовавшее мнение о соотношении между водородным растрескиванием и, например, анодным растворением как компонентами KP нуждается в поправке или даже в пересмотре. К целям данной главы относится также анализ роли и соотношения различных механизмов в KP-  [c.47]


Охрупчивание материала происходит вследствие различных механизмов [302, 307]. Наиболее широкое применение в объяснении механизма охрупчивания в агрессивной среде нашли представления о ионной адсорбции и водородного охрупчивания. В результате коррозионного воздействия окружаюш,ей среды трещина может распространяться смешанно по телу и по границам зерен. При низких темпе-  [c.284]

Охрупчивание металла под воздействием агрессивных сред. Оно вызывается преимущественно сульфидной и межкристаллитной коррозией. Сульфидная коррозия связана с образованием легкоплавких сульфидов никеля N 8 (Гпл = 810 °С) при наличии в высокотемпературном газовом потоке сернистых соединений. Сульфиды имеют больший объем, что вызывает разрыхление металла и проникновение сульфидов на границы зерен, особенно сильное в восстановительных средах, где нет плотных оксидных защитных пленок. Чем крупнее зерно в металле шва и ЗТВ, чем больше сварочные напряжения и длительность высокотемпературного нагрева при сварке, тем ниже стойкость сварных соединений против сульфидной коррозии по отношению к основному металлу.  [c.85]

Рис. 7.32. Схема возникновения охрупчивания металла в результате агрессивного воздействия среды и возникновение динамического деформационного упрочнения в связи с формированием полос скольжения [123] Рис. 7.32. Схема <a href="/info/167461">возникновения охрупчивания</a> металла в результате <a href="/info/275167">агрессивного воздействия</a> среды и возникновение динамического <a href="/info/38182">деформационного упрочнения</a> в связи с формированием полос скольжения [123]
Снижсинс механических свойств при воздействии кислых сред может быть вызвано НС только водородным охрупчиванием, но и изменением микрорельефа поверхности в результате интенсивного протекания локальных коррозионных процессов, приводящих к образованию концентраторов напряжений, мсжкри-сталлитной коррозии и т. п. Для разделения процессов водородного охрупчива- ния и локальных анодных процессов используют искусственное старение образцов после воздействия кислых сред на металл при температурах 150—200 °С с последующими механическими испытаниями [115, 116]. Степень влияния водорода на механические свойства сталей оценивают также по изменению характеристик технологических проб на перегиб или скручивание. Эффект наводорожи-вания зависит от времени воздействия агрессивной среды, температуры, концентрации и природы кислоты, природы и концентрации ингибитора [103, 115, 141].  [c.82]


Ускорить воздействие агрессивной среды, особенно содержащей поверхностно-активные вещества (ПАВ), можно адсорбцией ПАВ, вызывающих расклинивающее действие по микрощели. Если в коррозионном процессе возможно образование водорода, то водород может легко диффундировать в металл. Охрупчивание металла в зоне предразруше-ния (в глубине трещины) также ускорит разрушение. При пластической деформации возможно ускорение диффузии водорода в металл по зонам плоскостей сдвигов. Охрупчивание металла под действием водорода объясняют блокированием движения дислокаций атомарным водородом, внедрившимся в решетку металла.  [c.117]

Ходовая часть насоса является стандартной для насосов типа ХНЗ. Оригинальность конструкции состоит в оформлении торцового уплотнения, которое -осуществляется парой, состоящей из графита и специальной стали. Характеристика насоса — производительность 4 л/сек, напор 18,7 м. вод. ст., скорость вращения 2900 об1мин. По сравнению с другими пластмассами винипласт отличается рядом денных свойств. Он устойчив в кислотах средних концентраций и щелочах (табл. 10-ХУ1), легко перерабатывается в изделия, дешев и перспективен как заменитель свинца специальных сталей, используемых в химической аппаратуре. Основные недостатки этого материала — низкая теплостойкость, склонность к охрупчиванию и потере прочности при воздействии агрессивных сред.  [c.380]

Нефтегазопромысловое оборудование эксплуатируется в весьма сложных условиях. Воздействие возникающих в металле растягивающих, щжлических, знакопеременных напряжений, сил трения, кавитации, абразивного износа и др. в контакте с коррозионно-агрессивной средой приводит к специфическим видам коррозионного разрушения оборудования, таким, как коррозионное растрескивание, водородное охрупчивание, питтинг и др., которые в значительной мере снижают долговечность и надежность оборудования.  [c.4]

Изучение агрессивных свойств котловой воды, обусловленных повышенньши значениями показателя pH, весьма важно, так как щелочное охрупчивание котельного металла является одной из частных причин выхода котельных установок из строя. Например, анализ аварий и неполадок с барабанными котлами по причине образования межкристаллитных трещин в неплотностях котлов подтверждает положение о том, что межкристаллитная коррозия развивается в условиях эксплуатации котлов при совметном воздействии на металл высоких местных дополнительных напряжений и щелочно-агрессивной котловой воды.  [c.7]

Таким образом, при одновременном действии механических напряжений и жидких сред характер и механизм разрушения материала может не только количественно, но и качественно отличаться от разрушения в агрессивных средах в отсутствие напряженного состояния. Такие эффекты, как коррозионное растрескивание металлов, охрупчивание стекла, озонное растрескивание резин, появление хрупкого растрескивания при повышенных температурах у ПЭ в растворах поверхностно-акти-вных веществ возникают при одновременном воздействии механических напряжений и среды.  [c.121]

В результате анализа этих концепций и материала исследований случаев разрушения элементов конструкций машин и оборудования предложено рассматривать процесс коррозии под напряжением как следствие циклического механоэлектрохимического эффекта в агрессивных средах [3]. В местах поверхностных дефектов и на участках концентрации напряжений происходит образование микротрещин. Среда воздействует химически, увеличивая растрескивание, и электрохимически, способствуя ускорению развития трещины. Функционирует микрокоррозионная пара вершина трещины, представляющая обнаженные кристаллы металла, — анод, остальная поверхность под окисной пленкой — катод. Накапливающиеся на аноде продукты коррозии закупоривают трещину, так как их объем превышает объем металла в 1,5. .. 2 раза и расклинивают ее. Выделяющийся на катодных участках водород приводит к частичному восстановлению окисной пленки. Макрокоррозионная пара смещается по поверхности, и до расклинивания трещины продуктами коррозии в вершине трещины происходит изменение знака на отрицательный. Интенсивное выделение водорода на катоде способствует дальнейшему охрупчиванию и разрушению металла.  [c.579]


В аппаратах, работающих при повышенных температурах, например в реакторе аммонолиза, все вышеуказанные компоненты находятся в парообразном состоянии, и, хотя коррозия углеродистой стали незначительна, применять ее как конструкционный материал нельзя. В этих условиях вследствие термического разложения аммиака при 400—450 °С металл наводороживается и азотируется [6], а это приводит к охрупчиванию и образованию микро-и макротрещин. Кроме того, агрессивное воздействие среды в реакторе аммонолиза усугубляется присутствием небольших количеств побочных продуктов. Так, присутствие 1—2% СОг резко увеличивает скорость коррозии сталей. В производственных средах, которые включают двуокись углерода, например при получении гликолей из непредельных углеводородов и двуокиси углерода при 120—200 °С, углеродистая сталь корродирует со скоростью 0,1—0,2 мм/год (характер коррозии точечный и язвенный). В этих же условиях скорость коррозии стали 1X13 составляет 0,01 мм/год  [c.499]

На изменение свойств при деформационном старении, особенно на изменение склонности к хрупкому разрушению, влияет окружающая (агрессивная) среда. Можно полагать, что проблема коррозии низкоуглероди-стой стали под напряжением имеет прямое отношение к обсуждаемому предмету, особенно если такой коррозии подвергается предварительно деформированная сталь. Исходя из общих закономерностей влияния окружающей среды на механические свойства металлов [231, 232], можно заключить, что если воздействие данной среды уменьшает эффективную поверхностную энергию, то хрупкое разрушение потребует меньшей интенсивности блокирования дислокаций +N. Следовательно, охрупчивание низкоуглеродистой стали в условиях воздействия таких сред и деформационного старения произойдет более быстро или будет более интенсивным,  [c.120]

Общие сведения. С развитием новых отраслей техники тугоплавкие металлы и их сплавы благодаря высоким жаропрочности, коррозионной стойкости в ряде агрессивных сред и другим свойствам находят все более широкое применение. К тугоплавким металлам, использующимся для изготовления сварных конструкций, относятся металлы IV, V и VI групп периодической системы Менделеева ниобий, тантал, цирконий, ванадий, титан, молибден, вольфрам и др. Эти металлы и сплавы на их основе обладают рядом общих физико-химических и технологических свойств, основными из которых являются высокие температура плавления, химическая активность в жидком и твердом состоянии при повышенных температурах поотношению к атмосферным газам, чувствительность к термическому воздействию, склонность к охрупчиванию, к интенсивному росту зерна при нагреве выше температуры рекристаллизации. Пластичность сварных соединений тугоплавких металлов, как и самих металлов, в большей мере зависит от содержания примесей внедрения. Растворимость азота, углерода и водорода в тугоплавких металлах показана на рис. 1. Содержание примесей внедрения влияет на технологические свойства тугоплавких металлов и особенно на их свариваемость. Взаимодействие тугоплавких металлов с газами и образование окислов, гидридов и нитридов вызывают резкое охрупчивание металла. Главной задачей металлургии сварки химически активных тугоплавких металлов является обеспечение совершенной защиты металла и минимального содержания в нем вредных примесей. Применение диффузионной сварки в вакууме для соединения тугоплавких металлов и их сплавов является весьма перспективным, так как позволяет использовать наиболее совершенную защиту металла от газов и регулировать термодеформационный цикл сварки в благоприятных для металла пределах.  [c.150]

Сварка титана и его сплавов. Титан и его сплавы обладают двумя основными преимуществами перед другими материалами высокой удельной прочностью (прочность, отнесенная к плотности) вплоть до 723—773 К и хорошей коррозионной стойкостью во многих агрессивных средах. Титан имеет две аллотропические модификации высокотемпературную ( -титан) с объемно-центрированной кубической решеткой и низкотемпературную (а-титан) с плотноупакованной гексагональной решеткой. Температура полиморфного превращения титана в равновесных условиях равна примерно 1155 К. Чистый титан применяется ограниченно. Титановые сплавы в зависимости от фазового состояния при 293 К можно разделить на три группы а-, а -f- )- и -сплавы. К сплавам с а-структурой относятся технический титан ВТ1, сплавы ВТ5 (5% А1), ВТ5—1 (5% А1, 2,5% Sn) и другие, легированные а-стабилизаторами. Введение -стабилизаторов (молибден, марганец, ванадий, хром и др.) приводит к образованию двухфазной (а-f ) или даже однофазной -структуры. При небольшом количестве -стабилизаторов (до 2%) -фаза существует только при повышенных температурах (сплавы мартенситного типа 0Т4, 0Т4-1, ОТ4-2). С увеличением содержания -стабилизаторов -фаза может сохраняться в определенных количествах и при 293 К (сплавы ВТ6, ВТ6С, ВТ14 и др.) -сплавы легированы -стабилизаторами в такой степени, что даже после отжига их структура состоит из -фазы. Однофазные а-сплавы обладают высокой стойкостью против охрупчивания при совместном воздействии температур и напряжений, но пониженной технологической пластич-  [c.150]


Смотреть страницы где упоминается термин Охрупчивание под воздействием агрессивных : [c.190]    [c.27]    [c.49]    [c.137]    [c.15]   
Сварка и свариваемые материалы Том 1 (1991) -- [ c.0 ]



ПОИСК



Г азы агрессивные, воздействие

Охрупчивание

С агрессивная



© 2025 Mash-xxl.info Реклама на сайте