Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ползучесть нестационарная

ИССЛЕДОВАНИЕ ПОЛЗУЧЕСТИ ПРИ НЕСТАЦИОНАРНОМ НАГРУЖЕНИИ  [c.33]

Таким образом, выполненные расчетные и соответствующие экспериментальные исследования дают основание полагать, что разработанная физико-механическая модель достаточно адекватно описывает деформирование и повреждение материала при ползучести в условиях различного напряженного состояния и может быть применена при анализе работоспособности конструкций с нестационарным нагружением и давлением, близким к уровню возникающих напряжений.  [c.178]


В условиях воздействия длительного стационарного нагружения в базовом режиме эксплуатации и кратковременных нестационарных нагружений в маневренном режиме работы в металле литых конструкций накопление повреждений происходит в результате процессов ползучести и высокотемпературной малоцикловой усталости.  [c.40]

В корпусах современных мощных паровых турбин основным процессом, определяющим развитие трещиноподобных дефектов, является процесс ползучести как при стационарном, так и при нестационарном нагружении. Критериями механики разрушения применительно к росту трещины в условиях ползучести являются скорость роста трещины и коэффициент интенсивности напряжений.  [c.40]

Элементы энергетического оборудования при высоких температурах наряду с ползучестью испытывают циклические температурные нагрузки. Пуски и остановы турбин приводят к возникновению дополнительных (к внешним нагрузкам) напряжений. Возможны иные (планируемые и аварийные) источники нарушения стационарных режимов эксплуатации. Поэтому актуальными стали вопросы оценки прочности конструкций при нестационарных условиях работы материала. Этим объясняется рост числа исследований, посвященных проблеме оценки работоспособности материалов в условиях переменных температурно-силовых режимов эксплуатации оборудования.  [c.165]

Аналогичные оценки отклонений от линейного суммирования повреждений получены на той же партии металла в условиях нестационарных испытаний другого типа, где имело место сочетание термоциклирования с ползучестью [104].  [c.170]

Результаты испытаний с дискретным изменением нагрузок показали, что чувствительность стали к нестационарности сказывается и на изменении относительной суммарной пластичности при длительном разрыве, накапливаемой на всех этапах ползучести, за исключением заключительной стадии разрушения. Поэтому чувствительность к нестационарности можно оценивать по величине относительных деформаций.  [c.170]

Устойчивость нестационарного (зависящего от времени) поведения материала может быть рассмотрена так же, если заменить деформации и перемещения соответствующими скоростями [6, 7, 9, 10, 11]. Все практически важные материалы проявляют некоторую зависимость от времени в неупругой области. Однако для большинства композитов в типичных случаях их применения при низких и умеренных температурах удобной является гипотеза о стационарности (независимости от времени). Исключением являются композиционные материалы с металлической матрицей, предназначенные для работы при высоких температурах. В этом случае свойства ползучести принимаются во внимание в первую очередь.  [c.21]


Так как D, , очевидно, зависит от произведения а а р, но не зависит от ао и йг в отдельности, то для материалов, подчиняющихся степенному закону, один из сомножителей Ис (или йт) можно без потери общности принять равным 1. При этом уравнение (5.12) все еще позволяет описывать ползучесть смол при различных постоянных температурах. Подобное упрощение не годится для случая нестационарных температур [1], который будет рассмотрен в следующем разделу.  [c.183]

Анализ термической нагруженности конструктивных элементов показЫ)Вает, что при моделировании в качестве базового можно принять термический цикл ( трапеция ), включающий нестационарную (нагрев—охлаждение) и стационарную (выдержка при температуре max) части и отражающий принципиальные особенности нагрева в реальных условиях, либо частный вариант цикла — пила , воспроизводящий чисто циклический нагрев. Включение выдержки при max в термический цикл (рис. 7, В/) важно в связи с тем, что на этом этапе представляется возможным воспроизвести реологические процессы (релаксация напряжений, ползучесть), протекающие в реальных условиях и существенно снижающие сопротивление термической усталости.  [c.14]

При низких температурах и напряжениях (см. рис. 1, кривая 2) ползучесть не представляет большого интереса для практики (за исключением, пожалуй, прецизионных приборов), так как сопровождается лишь нестационарным, быстро и почти полностью прекращающимся течением. После этого размеры системы становятся стабильными и она может оставаться под приложенной нагрузкой в течение очень длительного времени без отрицательных последствий.  [c.10]

С целью определения пригодности металла для работы в условиях нестационарного режима, когда встречаются циклические изменения температуры и напряжений, испытания на ползучесть и длительную прочность ведут с остановками, связанными с частичным или полным снятием внешней нагрузки.  [c.249]

К числу интенсивно развиваемых направлений относятся расчетное и экспериментальное определение долговечности при нестационарных режимах нагружения и нагрева с привлечением теорий ползучести и гипотез (линейных и нелинейных) суммирования повреждений. Такие условия возникают при форсированных режимах нагружения, когда проявляется выраженная нестационарность процессов ползучести и накопления повреждений.  [c.23]

При повышенных и высоких температурах характерным является развитие деформаций ползучести и накопление длительных статических повреждений. Эти два важнейших для прочности и ресурса процесса интенсифицируются при увеличении действующих напряжений, времени и температуры. Расчеты на длительную статическую прочность проводятся [1—3, 5] по пределам ползучести и длительной прочности для стационарных и нестационарных режимов причем в последнем случае, как и при многоцикловой усталости, используется преимущественно условие линейного суммирования повреждений.  [c.12]

Основным методом расчета дисков ГТД является расчет на кратковременную и длительную прочность при действии центробежных нагрузок [4]. Расчет производится с учетом пластических деформаций и ползучести материала. Для дисков сложной формы необходимо учитывать действие изгибающих моментов. Диски турбины, имеющие значительную массу, неравномерно нагреты как по радиусу, так и по сечению (в особенности на нестационарных режимах). Температурные напряжения в дисках турбин являются важным компонентом, влияющим на напряженное состояние. При расчете определяется запас статической прочности по напряжениям во всех сечениях диска на каждом из режимов нагружения  [c.83]

Уравнение (5.6) использовалось для расчетного определения изохронных кривых и описания процесса нестационарной ползучести, происходящей при симметричном цикле изменения напряжений +20 кгс/мм по закону а = t, где с = 0,4 кгс/мм . В данных случаях интеграл в уравнении (5.6) легко берется и оно приводится к виду  [c.125]

В настоящее время одной из важнейших проблем в теплоэнергетике является продление расчетного срока эксплуатаций энергетического оборудования до 200—250 тыс. ч, что связано с необходимостью экстраполяции экспериментальных данных на весьма длительное время. При нестационарных полупиковых и пиковых нагрузках работают энергоблоки мощностью 100, 150 и 200 тыс. кВт, значительная часть которых уже проработала свыше установленного ранее расчетного срока эксплуатации 100 тыс. ч. Поэтому возникает необходимость прогнозирования свойств материала, отражающихся на его работоспособности за длительный период эксплуатации, с применением надежных методов экстраполяции. Они должны быть основаны на современных представлениях о происходящих в металле процессах при высокой температуре, т. е. ползучести и высокотемпературной малоцикловой термомеханической усталости.  [c.179]


В книге изложены современные методы расчета на прочность, жесткость и долговечность деталей газотурбинных двигателей с учетом нестационарности нагружения, пластичности и ползучести материала. Обобщены экспериментальные данные, накопленные при исследовании прочности авиационных двигателей.  [c.219]

Таким образом, не только режимы термического и механического нагружения, но и процесс упругопластического деформирования в опасных точках имеет нестационарный характер. Особенностью термомеханического напряженного состояния кромки лопатки является неоднородность распределения температур и напряжений наиболее неблагоприятное сочетание напряжений и температур (но не экстремальных) имеет место в полуцикле нагрева, когда в кромке действуют сжимающие напряжения. В целом для лопатки возможно сочетание как сжимающих, так и растягивающих напряжений в полуцикле высокотемпературного нагрева. Пластическое деформирование кромок приводит к возникновению поля остаточных напряжений при однородном тепловом состоянии и к изменению распределения напряжений по сечению в последующих циклах. При этом в формировании предельных состояний существенной оказывается роль процессов ползучести и релаксации [20, 29, 64, 68], протекающих наиболее интенсивно на этапе стационарного режима (период выдержки) и при наличии определенного уровня статических напряжений.  [c.27]

Ползучесть нестационарная при знакопеременных напряжениях 240—241 --при сложном напряженном состоянии 241—242 Ползучесть неустановившаяси —- Понятие 175 Ползучесть установившаяся 177— 181 — Понятие 175  [c.450]

Наиболее распространенными теориями ползучести являются теория старения, теория течения (следует отличать от теории пластического течения) и теория упрочнения [120, 157, 194, 309]. Теория старения малопригодна для описания деформирования материала при нестационарном во времени т нагружении, когда o(T) onst [10, 194]. Теория упрочнения при нестационарном нагружения во многих случаях имеет приоритет по отношению к теории течения, так как дает более близкие к эксперименту результаты [10, 194].  [c.13]

Испытание проводили на машинах АИМА-5-2 использовали цилиндрические образцы из сплава ХН55МВЦ диаметром 7 мм и длиной рабочей части 70 мм [185]. Удлинение и соответственно деформацию образца измеряли с помощью индикаторов часового типа И410МН с ценой деления 0,01 мм. Экспериментально определяли кривые ползучести при 7 = 900°С в случае стационарного а = 14 и 20 МПа (рис. 1.5, режим 1) и нестационарного— циклического—(рис. 1.5, режим 2) нагружения по следующему режиму нагружение о = 20 МПа в течение 25 ч, разгрузка до а = 0, отдых 50 ч (а = 0). Эксперименты показали, что в процессе отдыха наблюдается обратная ползучесть при нагружении (а = 20 МПа) кривые ползучести практически идентичны, т. е. не зависят от номера цикла и повторяют начало первой стадии (рис. 1.5, кривая 2). Автомодельность кривых ползучести при периодическом нагружении, по всей видимо-  [c.33]

Рис. 1.5. Кривые ползучести образца из сплава ХН55МЦВ при стационарном (1) и нестационарном (2) режимах нагружения Т = 900°С) Рис. 1.5. <a href="/info/1668">Кривые ползучести</a> образца из сплава ХН55МЦВ при стационарном (1) и нестационарном (2) режимах нагружения Т = 900°С)
Рис. 1.6. Расчетные кривые ползучести сплава ХН55МЦВ при стационарном (/) и нестационарном нагружениях (2, 3) Рис. 1.6. Расчетные <a href="/info/383188">кривые ползучести сплава</a> ХН55МЦВ при стационарном (/) и нестационарном нагружениях (2, 3)
На рис. 1.6 для сравнения представлены кривые ползучести при статическам и ступенчатом нагружениях, рассчитанные по различным теориям ползучести. Из рисунка видно, что лучшее описание процесса ползучести при нестационарном нагружении дает теория анизотропного упрочнения. В случае циклического нагружения материала, работающего при высоких температурах, теория изотропного упрочнения (обычно именуемая просто теорией упрочнения) будет давать заниженные значения накопленной деформации ползучести (при расчете по теории упрочнения использовали зависимость Sf = где и гпс — эмпирические константы).  [c.37]

Из рис. 4.7 видно, что проявление чувствительности к нестационарности стали 15Х1М1Ф зависит от деформации ползучести при >0,4% а <1, т.е. проявляется чувствительность к нестационарному нагружению. Из уравнения состояния этой партии металла получено [64], что деформация в экстремальной точке (в конце затухающей стадии) е =0,5%. Следовательно, можно предположить, что чувствительность к нестационарному нагружению начинает оказывать влияние на долговечность на стадии ускоренной ползучести.  [c.169]

При термоциклическом нагружении нестационарность может проявляться в изменении нагрузки (размаха напряжений или деформаций), разности температур At=tmax— min, длительности цикла Тц и развивающихся деформаций ползучести, а иногда и в совместном действии этих факторов.  [c.158]


В монографии обобщены теоретические и экспериментальные исследования пластичности, ползучести и долговечности материалов при простых и сложных нестационарных нагружениях. Экспериментально показано, что основные гипотезы теории пластичности, ползучести и долговечности при сложных нестационарных процессах нагружения нарунгаются. Дана оценка влияния различных параметров сложности нагружения на основные характеристики пластичности, ползучести и долговечности. Приведены обобщающие уравнения и критерии предельного состояния материалов при сложных процессах нагружения.  [c.440]

Это деление в определенной мере является условным, так как в ряде случаев установки ОНД позволяют реализовывать трехосное нагружение, установки ОНД или ОН К могут быть переделаны в установки ОНКД и т. д. Классифицируют установки также по способу создания усилия непосредственный (путем подвески калиброванных грузов), механический (с ручным и электрическим приводом), электромагнитный, гидравлический и электро-гидравлический. Непосредственный и электромагнитный способы в основном применяют при изучении явлений, связанных с временными эффектами (ползучестью, релаксацией и т. п.) механический и гидравлический — при изучении статического и циклического стационарного нагружения электро-гидравлический — при нестационарном нагружении. В ряде случаев применяют и другие способы создания нагрузок, например термоциклирова-ние (создание напряжений за счет нагрева и охлаждения стесненного образца), но они ограничены специальными областями исследований.  [c.13]

Усиление циклической нестабильности материалов и особенно повышение температур до уровней, связанных с возникновением деформаций ползучести, делают крайне затруднительным поцикловой анализ напряженно-деформированных состояний и накопленных повреждений. Если при этом имеют место нестационарные неизотермические режимы нагружения, то поцикловый расчет даже с применением современных программ метода конечных элементов и мощных ЭВМ не дает конечного результата в оценке прочности при малоцикловом и длительном циклическом нагружении.  [c.214]

Проблема термоцпклической прочности является комплексной проблемой, включающей в себя три основных вопроса. Первый вопрос заключается в разработке уравнений состояния, способных с удовлетворяющей инженерную практику точностью описать кинетику напряженно-деформированного состояния, процессы пластичности и ползучести при переменных нагрузках и температурах. Уравнения состояния должны включать параметры, характеризующие процесс накопления повреждений и разрушения материала. Второй вопрос заключается в выборе физически обоснованной меры повреждаемости материала, характеризующей кинетику разрушения материала на различных стадиях процесса деформирования, и разработке соответствующих кинетических уравнений, устанавливающих связь между указанной мерой и параметрами процесса. Третьим вопросом является формулировка соответствующих гипотез, связывающих кинетику процесса деформирования и накопления повреждений с типом разрушения, и критериев разрушения, связывающих параметры напряженно-деформированного состояния и меры повреждаемости для критических состояний материала. При решении указанных трех проблем должна учитываться существенная нестационарность нагрун<ения н нагрева Б условиях малоциклового термоусталостного разрушения, а формулировка соответствующих уравнений и критериев должна опираться на современные представления физики твердого тела о микро- и субмикроскопическом механизмах пластических деформаций и накопления повреждений в материале [42—64 .  [c.141]

При оценке прочности и ресурса элементов конструкций, работающих в условиях малоциклового нагружения при переменных температурах и сложнонапряженном состоянии, возникают две связанные задачи определение напряженно-деформированного состояния элементов конструкций при работе материала максимально нагруженных зон за пределами упругости, когда развиты упру-гонластические деформации и деформации ползучести, и на базе полученной информации оценка запасов прочности и долговечности при малоцикловом неизотермическом нагружении. Характер протекания процесса деформирования за пределами упругости и циклические деформации, определяющие формирование предельного состояния материала, зависят от режима термосилового воздействия на деталь и параметров термомеханической нагруженности максимальная температура, градиент температур, длительность и форма термического и силового циклов нагружения и др.), а также сочетания нестационарных режимов нагружения в период эксплуатации изделия.  [c.11]

Чередование нестационарных режимов работы со стационарными делает все более сложными и напряженными условия работы дисков турбомашин [22, 23, 44]. Мощные тепловые потоки в авиадвигателе вызывают в турбинных дисках высокие температуры (до 700° С) при значительных радиальных перепадах (до 300°С). Это определяет большие термические напряжения циклического характера [43, 70]. На стационарных режимах температуры и нагрузки сохраняются постоянными, но достаточно высокими, что приводит к ползучести и релаксации напряжений во время эксплуатации. Таким образом, в материале турбинного диска при многократном повторении нестационарного режима возникают циклически изменяющиеся пластические деформации, а их накопление от цикла к циклу в ряде случаев является причиной разрушения дисков [22, 43], особенно если пластичность материала снижается с увеличением выработки ресурса и пребывания материала в условиях высоких температур [10, 100]. В этом отношении характерны результаты теоретического и экспериментального исследования термопрочно- сти дисков турбомашин [43], приведенные на рис. 1.7.  [c.15]


Смотреть страницы где упоминается термин Ползучесть нестационарная : [c.177]    [c.450]    [c.36]    [c.49]    [c.132]    [c.123]    [c.125]    [c.27]    [c.55]    [c.222]    [c.61]    [c.94]    [c.69]    [c.195]    [c.373]    [c.324]   
Термопрочность деталей машин (1975) -- [ c.270 , c.272 ]



ПОИСК



Нестационарность



© 2025 Mash-xxl.info Реклама на сайте