Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрический пробои

Напряжение, приложенное к электрической изоляции, должно быть значительно ниже того значения, при котором электроизоляционный материал разрушается. Разрушение может происходить в результате сквозного электрического разряда через материал это явление называют электрическим пробоем, а минимальное напряжение, вызывающее электрический пробой,— пробивным напряжением / р, В некоторых случаях при напряжении, более низком, нежели Д р, начинается поверхностный электрический разряд, ие распространяющийся на значительную глубину материала такое явление называется поверхностным пробоем. Напряжение,  [c.95]


Явление электрического пробоя связано с электронными процессами в диэлектрике, возникающими в сильно электрическом поле и приводящими к внезапному резкому местному возрастанию плотности электрического тока к. моменту пробоя.  [c.116]

В отличие от электрического пробоя напряжение теплового пробоя, как видно из (4.55), зависит от частоты  [c.125]

При изучении электрического пробоя важно, чтобы в образцах — объектах исследования не было пор (газовых включений), поскольку в них возникает ударная ионизация, искажающая картину пробоя.  [c.78]

В качестве примера возможного механизма электрического пробоя ниже приведены основные положения теоретических работ А. А. Воробьева и Е. К. Завадовской. Изучая пробой щелочно-галогенных кристаллов, эти ученые обнаружили прямую пропорциональность между электрической прочностью и энергией решетки. Под энергией кристаллической решетки понимают количество энергии, необходимое для полного разрушения одного моля данного вещества, т. е. разделения ее на ионы и рассеяния их на бесконечно большие расстояния.  [c.78]

Для электрического пробоя твердых диэлектриков характерными являются следующие признаки. В сильных электрических полях в зависимости тока, протекающего через диэлектрик, от напряженности электрического поля отсутствует участок насыщения, характерный для газов и чистых жидкостей (см. рис. 5.4). При увеличении напряженности ток перед пробоем растет экспоненциально. Для самых различных по свойствам диэлектриков Япр изменяется в довольно узких пределах 10 — 10 В/м. Величина р не зависит от  [c.179]

В результате этого процесса происходит пробой газов, который совершается мгновенно, т. е. за время порядка 10 сек. Этот пробой на основе ударной ионизации носит название электрического пробоя, он не зависит от времени приложения напряжения, не связан с нагревом материала, как тепловой пробой, так как ударная ионизация происходит мгновенно и зависит только от критической напряженности поля. Электрический пробой типичен для газов и неполярных других диэлектриков.  [c.30]

Характерные признаки электрического пробоя  [c.37]

Пробивная напряженность электрического пробоя твердых диэлектриков находится в узких пределах (Ю —10 е/см).  [c.37]

Пробивная напряженность электрического пробоя значительно меньше зависит от температуры, чем при тепловом пробое.  [c.37]

Представление об электронной природе электрического пробоя дал в 1928 г. выдающийся советский электротехник А. А. Смуров. Оио заключается в следующем. Электроны, освобожденные электрическим полем у катода, перемещаются к аноду. В головной части лидера создается сильное электрическое поле, обусловливающее дальнейшую ионизацию, появление электронного объемного заряда и прорастание лидера к аноду. Внутри лидера имеются положительные ноны и электроны,, так же как и при разряде в газах. Ионизация атомов в этом объеме производится только электронами, ускоренными полем. Ударная ионизация электронами на пути лидера может продолжаться и после прорастания его до анода и завершается проплавлением диэлектрика электронным током.  [c.39]


Учитывая сказанное, для регистрации слабых упруго-пластических волн нагрузки использовался емкостный датчик на свободной поверхности с неподвижным электродом диаметром 25 мм и охранным кольцом для создания однородного поля в воздушном зазоре х=2 мм (охранное кольцо сечением 28Х Х96 мм). Для устранения электрического пробоя между электродами прокладывалась диэлектрическая пленка толщиной  [c.179]

Только при повышении температуры выше некоторого предела, зависяш,его от рода масла, смазочная пленка начинает прорываться и наступают электрические пробои . Однако при температурах выше 200° масляная пленка, как правило, снова приобретает свои буферные свойства, предотвращая появление металлических контактов трущихся поверхностей.  [c.194]

Разрушающее действие разрядов атмосферного электричества известно давно. В литературе описаны многочисленные случаи наблюдавшегося в природе разрушения естественных объектов и сооружений (деревья, скалы, башни, железобетонные опоры и т.п.) при ударе в них молнии. Электрический пробой твердой изоляции в электрических аппаратах и в системах передачи импульсного высокого напряжения тоже, как правило, сопровождается ее механическим разрушением. Это явление обращает на себя особое внимание в исследованиях электрической прочности твердых диэлектриков, когда зримо проявляются определенные закономерности характера разрушения материалов. Поэтому вполне естественно, что появилась идея полезного использования наблюдавшегося эффекта. Согласно предложению А.А.Воробьева /1/, способ разрушения горных пород и руд за счет их электрического пробоя с использованием импульсного высокого напряжения от емкостного накопителя энергии реализуется следующим образом. На кусок породы, породный массив устанавливают электроды (металлические контакты) и подают на них импульс высокого напряжения с уровнем напряжения, достаточным для электрического пробоя. Энергия, выделяющаяся в канале разряда, действует на материал подобно взрывчатому веществу и приводит к его разрушению. При достаточном количестве энергии в разряде способ позволяет разрушать отдельные куски породы, отделять порции материала с поверхности массива.  [c.9]

Создать технологию с непрерывным процессом разрушения массива затруднительно, поэтому дальнейшие исследования были направлены на то, чтобы снять указанные выше ограничения в условиях осуществления электрического пробоя. Требовалось создать условия, при которых пробой породы мог бы быть осуществим даже при наложении электродов только с одной свободной поверхности. В исследованиях электрической прочности жидких и твердых диэлектриков на косоугольной волне импульсного напряжения было установлено, что их вольт-временные зависимости пробоя (далее вольт-секундные характеристики - в.с.х.) характеризуются различным коэффициентом импульса ki. Данный коэффициент определяет степень роста напряжения пробоя на импульсном напряжении по отношению к напряжению пробоя на статическом напряжении (напряжении постоянного тока, тока промышленной частоты). С уменьшением времени экспозиции импульсного напряжения прочность жидких диэлектриков растет быстрее, чем для твердых диэлектриков, что приводит к инверсии соотношения электрических прочностей сред /2/. На статическом напряжении электрическая прочность твердых диэлектриков, как правило, превышает прочность жидких диэлектриков в одинаковых разрядных промежутках. Однако на импульсном напряжении при экспозиции напряжения менее 10- с электрическая прочность диэлектрических жидкостей и даже технической воды возрастает настолько, что становится выше прочности твердых диэлектриков и горных пород.  [c.10]

В тех случаях, когда арматура не электрического пробоя облегчен, так как разряд на арматуру может быть осуществлен только путем пробоя слоя бетона. Однако такой облегченный случай пробоя, скорее всего, исключение, чем правило. Реальный процесс разрушения ЖБИ означает постепенное обнажение арматуры в режиме электроимпульсного пробоя при наличии и альтернативной возможности перекрытия по поверхности на обнаженную арматуру. Опытные работы по разрушению железобетонных изделий показали, что состояние арматуры после извлечения позволяет ее повторно использовать по прямому назначению. Бетон после дополнительного измельчения также может использоваться в различных целях, например, как компонент для дорожных покрытий. Подобным образом может быть реализована утилизация железобетонных опор  [c.23]


Закономерности электрического пробоя горных пород  [c.25]

Механизм ЭИ может быть представлен двумя процессами, действующими во времени друг за другом образование в результате электрического пробоя в поверхностном слое твердого тела канала разряда и последующее разрушение твердого тела под действием механических напряжений, возникающих в результате расширения канала разряда при выделении в нем энергии емкостного накопителя. Первая стадия процесса определяет уровень напряжения, при котором реализуется процесс ( рабочее напряжение ). Выбором оптимальных параметров импульсного напряжения и условий пробоя (вид среды, геометрия электродной конструкции) достигаются минимальные градиенты напряжения пробоя. На второй стадии процесса за счет оптимизации преобразования энергии накопителя в работу разрушения достигается минимальная энергоемкость разрушения материала. Техникоэкономическая эффективность процесса в значительной степени зависит от возможности интенсификации процесса разрушения - достижения высоких объемных показателей разрушения в единицу времени при приемлемых удельных показателях энергоемкости. Последнее может осуществляться как за счет увеличения числа единичных актов разрушения в единицу времени путем повышения частоты подачи  [c.25]

Основным условием электрического импульсного пробоя твердого тела, помещенного в жидкую или газообразную среду под давлением, является превышение электрической прочности среды над электрической прочностью твердого тела. По соотношению в.с.х. твердых тел и жидкостей (раздел 1.1) определяют требуемые амплитуду и скорость нарастания напряжения на объекте, при которых может быть выполнено условие электрического пробоя твердого тела.  [c.72]

Основное назначение расчетной модели - определение гранулометрического состава готового продукта, образовавшегося в результате электрического пробоя образца, как функции параметров генератора импульсных напряжений (разрядной емкости С,  [c.86]

Электроимпульсное дробление связано с электрическим пробоем образца, причем толщина образца значительно больше радиуса канала разряда Ко 1 2, поэтому следует рассматривать только цилиндрическую симметрию источника нагрузки. Связь параметров источника импульсов с распределением мгновенных массовых скоростей в образце при его  [c.86]

Параметры электрического пробоя и показатели дробления. По уровню рабочего напряжения электродные устройства со щелевым рабочим промежутком соответствуют промежуточному случаю между пробоем в системе электродов, наложенных на одну свободную поверхность, и пробоем куска породы, по размеру равного величине разрядного промежутка. При определенной величине разрядного промежутка степень соответствия прежде всего зависит от исходной крупности продукта, а также от таких параметров геометрии электродной системы, как число электродов и размер классифицирующей ячейки, которыми и определяются условия контакта  [c.180]

Целью исследований являлось определение параметров электрического пробоя (напряжение пробоя) и показателей дробления продуктивной породы (производительность, энергоемкость, гранулометрический состав) для обоснования требований к параметрам создаваемого технологического комплекса. Дробление пород проводилось с использованием электродных систем со щелевым рабочим промежутком, изменяющимся от 15 до 40 мм. Исследовалось влияние таких факторов, как исходная крупность материала, уровень напряжения и энергия генератора, тип электродной системы.  [c.181]

У многих технических диэлектриков при электрическом пробое электрическая прочность практически не зависит от температуры в сравнительно широком диапазоне температур. При построении графиков зависимости электрической прочности технических диэлектриков от температуры часто обнаруживаются две области при сравнительно низких температурах электрическая прочность от температуры не зависит, при более высоких — резко падает с увеличением температуры. В первом случае мы имеем область электрического пробоя, во втором— электротеплового (рис. 2-32). В кристаллах при импульсах продолжительностью 10 с и меньше наблюдается слабый рост электрической прочности с ростом температуры, а при импульсах большей длительности и при постоянном напряжении в кривой температурной зависимости электрической прочности может быть максимум. При пробое тонких пленок органических высокомолекулярных соединений иногда наблюдается рост элек-  [c.80]

Процесс электрического пробоя начинается с инжекции электронов в жидкий диэлектрик с катода и образования электронных лавин. В ходе распространения лавин возникают стримероподобные образования, которые в результате процессов фотоионизации перемещаются от анода к катоду со скоростью 10 м/с. Пробой. завершается, когда плазменный канал замыкает электроды. Плотность  [c.176]

Теория электрического пробоя. В основе электрического пробоя твердых диэлектриков лежат электронные процессы ударной ионизации, которые и объясняют пробой твердого диэлектрика импульсами напряжения длительностью 10 —10 сек. В этом процессе исключается влияние диэлектрических потерь и нагрева материала под действием напряжения. Как и в газах, пробой наступает мгновенно, не зависит от времени действия напряжения и связан с разрушением молекулярной и кристаллической структуры материала. При электрическом пробое решающим фактором является напряженность электрического поля, так как именно она обусловливает процесс образования и движения электронов в диэлектрике. Этим и, определяются закономериости изменения пробивного напряжения от времени, температуры и частоты, которые наблюдаются при электрическом пробое.  [c.39]


Высоковольтные рентгеновские трубки не могут быть двухэлектродными, так как при высоком ускоряющем поле более 400 кВ наблюдаются автоэлект-ронная эмиссия, электрические пробои, )ассеяние и отражение электронов. Ъэтому высоковольтные рентгеновские трубки делают секционными, состоящими из катода, промежуточных электродов и полого анода. Полый анод почти полностью улавливает отраженные электроны. Возможность высоковольтного вакуумного пробоя исключена благодаря большому расстоянию между анодом и катодом.  [c.269]

Теорию электрического пробоя можно применить к жидкостям, максимально очищенным от примеси. При высоких значениях напряженности электрического поля может происходить вырывануе электронов из металлических электродов и, как и в газах, разру.ие-пие молекул самой жидкости за счет ударов заряженными частицами. При этом повышенная электрическая прочность жидкого диэлектрика по сравнению с газообразным обусловлена значительно меньшей длиной свободного пробега электронов. Пробой жидкостей, содержащих газовые включения, объясняют местным перегревом жидкости (за счет энергии, выделяющейся в относительно легко ионизирующихся пузырьках газа), который приводит к образованию газового канала менаду электродами. Вода в виде отдельных мелких капелек, находящихся в трансформаторном масле, при нормальной темпера-Tj-pe значительно снижает (рис. 4-6). Под влиянием электрического поля сферические капельки воды —сильно дипольной жидкости — поляризуются, приобретают форму эллипсоидов и, притягиваясь между собой разноименными концами, создают между э/ектродами цепочки с повышенной проводимостью, по которым и происходит электрический пробой.  [c.65]

Идея ИПХТ была предложена еще в 1926 г. немецкой фирмой Сим-менс—Гальске [10]. Основой ее является выполнение проводящего охлаждаемого тигля с вертикальными разрезами, препятствующими возникновению в тигле кольцевых токов, коаксиально охватывающих загрузку и экранирующих ее от магнитного поля индуктора. Однако для реализации этой идеи необходимо было решить ряд сложных задач обеспечить передачу расплаву достаточного количества энергии, необходимого для устойчивого протекания рабочего процесса в условиях контактной теплоотдачи от расплава к холодному тиглю увеличить до приемлемых значений КПД, несмотря на электрические потери в тигле и предотвратить электрические пробои на секции тигля в его ионизированном рабочем пространстве. Это оказалось настолько сложным, что в течение многих лет попьяки создания работоспособных ИПХТ для плавки металлов (см., например, [11]) не приводили к успеху, и только после систематических исследований ВНИИЭТО, начатых в 1961 г., удалось к 1965 г. закончить поисковые работы, завершившиеся созданием устойчиво работающих лабораторных печей. К 1980 г. было в основном завершено исследование технологических возможностей ИПХТ-М, создание инженерных основ их конструирования, разработка и опробование полупромышленных пеЧей (руководители работ до 1978 г. - Л.Л. Тир, с 1978 г. — А.П. Губченко). С 1980 г. начат вы-  [c.9]

Процесс электроалмазной обработки ведется при безопасном напряжении в 6—10 В и плотности тока 50—200 А/см . При более высоком нап )яжении стабильность процесса нарушается из-за случаев электрического пробоя межэлектродного промежутка. Возникает также ряд проблем, связанных с повышенным нагревом детали и инструмента. В качестве электролитов при электроалмазной обработке обычно применяют нитратно-нитритные растворы. Обработка твердых сплавов ведется обычно в растворе 2—3% NaNOg с добавкой 0,2—0,3% NaNOa и 2—3% фтористого натрия. Нитрит натрия выполняет роль и антикоррозионной добавки назначение фтористого натрия — переводить образующиеся при обработке коллоидные гидроокиси в растворимое состояние, вследствие чего облег- чается их удаление из межэлектродного промежутка и создаются условия для высокопроизводительной обработки.  [c.83]

На особые возможности электрофизики, где еще не были затронуты глубокой научной проработкой процессы, связанные с проявлением сильных электрических полей и их взаимодействием с веществом, с электроразрядными процессами в различных средах, включая взаимодействие плазменного канала с твердым телом, указывал академик В.И.Попков. Различные виды электротехнологии внедряются в самые различные отрасли промышленности, что приводит к повышению производительности труда, снижению себестоимости затрат, повышению общей культуры производства. Многим критериям эффективного способа разрушения горных пород и руд отвечает электроимпульсный способ, использующий для разрушения твердых диэлектрических и полупроводящих материалов энергию импульсного электрического разряда при их непофедственном электрическом пробое. Идея способа была высказана еще в конце 1940-х годов профессором А.А.Воробьевым. Он предложил производить разрушение горных пород и руд за счет их электрического пробоя с использованием импульсного высокого напряжения от емкостного накопителя энфгии /1/. Исследования И.И.Каляцкого (1953 г., диссертация, г.Томск, Томский политехнический институт) реально подтвердили возможность отбойки углей электрическим пробоем с использованием генераторов импульсного напряжения типа Аркадьева-Маркса. Принципиально важные положения физического принципа способа в усовершенствованном варианте, названным электроимпульсным способом /2/, были обоснованы проф. Г.А.Воробьевым (1963 г., диссертация, г.Томск, Томский политехнический институт) и впервые экспериментально подтверждены А.Т.Чепиковым (1962 г., диссертация, г. Томск, Томский политехнический институт). Положенный в основу способа эффект внедрения разряда в твердое тело на импульсном высоком напряжении, обоснованный и экспериментально подтвержденный А.А.Воробьевым,  [c.7]

На рисунке 1.1 схематично дано сопоставление вольт-секундных характеристик пробоя в одинаковом разрядном промежутке твердого тела (горной породы) и жидкой среды. Точка пересечения вольт-секундных характеристик Ak соответствует равенству прочностей и вероятности электрического пробоя фавниваемых сред, и при экспозиции импульсного напряжения менее 10- с горная порода становится электрически слабее такого жидкого диэлектрика, как трансформаторное масло, а при экспозиции менее 2-3-Ю" с - слабее технической воды. В области диаграммы левее преобладает электрический пробой твердого тела. В диэлектрических жидкостях условия для реализации процесса более благоприятные, пробой в недиэлектрической жидкости требует импульсов напряжения с длительностью фронта на порядок меньше (10 с) и более высокого уровня напряжения (подробнее см. разд. 1.2). Так как в этом случае система электродов представляет для источника импульсов низкоомную нагрузку, то формирование на породоразрушающем инструменте импульсов напряжения с требуемыми параметрами представляет определенную техническую проблему /11/.  [c.10]

В первых экспериментальных наблюдениях явления внедрения разряда в поверхностный слой твердого диэлектрика (А.Т.Чепиков) при использовании в качестве модельного материала пластичного фторопласта при пробое в толще материала (в поле продольного среза образца) отчетливо фиксировался обугливающийся след от канала разряда, а на образцах горных пород - воронка откола материала. Этими опытами были начаты систематические исследования физических основ способа и многообразных технологических его применений. Данная разновидность способа разрушения твердых тел электрическим пробоем, использующая эффект инверсии электрической прочности сред на импульсном напряжении, получила название электроимпульсного способа разрушения материалов (ЭИ). Работы многих исследователей свидетельствуют, что гамма пород и материалов, склонных к ЭИ-разрушению, достаточно обширна. Главными предпосылками для разрушения материалов таким способом является их склонность к электрическому пробою и хрупкому разрушению в условиях импульсного силового нагружения. Электрическому пробою подвержено большинство горных пород и руд, различные искусственные материалы -продукты пффаботки или синтеза минерального сырья, а именно те, которые по электрическим свойствам могут быть отнесены к диэлектрикам и слабопроводящим материалам. За пределами возможностей способа остаются лишь руды со сплошными массивными включениями электропроводящих минералов. По условиям разрушения к трудно разрушаемым из диэлектрических материалов относятся лишь не склонные к хрупкому разрушению в естественных условиях пластмассы и резины. Но и в данном случае применение метода охрупчивания материалов глубоким охлаждением делает ЭИ-метод разрушения достаточно эффективным."  [c.12]


Пробой и разрушение кускового материала с выраженной слоистостью. Как правило, материал с выраженной слоистостью имеет сильно выраженную лещадную форму, что делает возможным выбором типа электродной конструкции задавать кускам ту или иную ориентацию относительно разрядного промежутка, изменяя таким образом условия их электрического пробоя (вдоль или поперек слоистости, сквозной пробой или внедрение с поверхности). Условиями пробоя определяются уровень пробивного напряжения и показатели разрушения, такие как производительность дробления, гранулометрический состав продукта дробления. В исследовании по электрическому пробою слюдитового сланца (характерного для изумрудосодержащих пород) определены пробивные напряжения при различной ориентации направления пробоя относительно слоистости и дано качественное описание характера разрушения образцов. Опыты проведены при двух значениях величины разрядного промежутка / (36 мм и 20 мм) и трех вариантах размещения электродов относительно слоистости наложение на боковую поверхность, параллельной плоскости слоистости А, наложение с торца образца вдоль слоистости В и положение с торца образца поперек слоистости С. В последнем случае с изменением соотношения величины разрядного промежутка / и толщины образца d условия пробоя изменяются от пробоя с поверхности ( l - при Ш<1) до сквозного пробоя (с2 - при Ш >1).  [c.80]

Ряд физических факторов естественным образом формируют класс дезинтегрирующих устройств, предназначенных для измельчения материалов. Первый фактор состоит в том, что обеспечение эффективности процесса прежде всего сводится к требованию обеспечения эффективности пробоя кусков руды, а это обеспечивается в том случае, если имеется определенное соответствие между размером куска d и величиной межэлектродного расстояния электродной конструкции /, а именно d I. о последнее определяет уровень рабочего напряжения (с увеличением разрядного промежутка напряжение пробоя повышается), который из эксплуатационных соображений целесообразно ограничить величиной 300-400 кВ. Из этого следует, что предельно допустимая величина разрядного промежутка может быть определена 30-35 мм, а размер исходного материала может достигать 50-60 мм. Этот предел определяется зависимостью эффективности электрического пробоя кусков породы от соотношения dA, которое для электродных систем типа стержень-плоскость не должно превышать (1.5-2). С другой стороны, как уже было отмечено выше, по физическим причинам внедрение разряда в частицы менее 2 мм становится невозможным. Таким образом, сугубо по причинам физических особенностей процесса выделен интервал крупности материала, в пределах которого при приемлемом уровне напряжения может быть обеспечена высокая эффективность благодаря созданию условий для эффективного электрического пробоя частиц материала, а именно -(50-60)+2 мм.  [c.158]


Смотреть страницы где упоминается термин Электрический пробои : [c.72]    [c.192]    [c.436]    [c.72]    [c.124]    [c.207]    [c.80]    [c.170]    [c.242]    [c.10]    [c.26]    [c.53]    [c.101]    [c.153]    [c.200]   
Физика твердого тела Т.2 (0) -- [ c.0 ]

Физика твердого тела Т.1 (0) -- [ c.0 ]



ПОИСК



Закономерности электрического пробоя горных пород

Изоляция электрическая пробой

Отыскание места электрического пробоя изоляции

Пробои

Пробой

Пробой газа электрический

Пробой электрический

Пробой электрический

Пробой электрический в неоднородных полупроводниках

Пробой электрический и функции Ваннье

Пробой электрический модели

Пробой электрический условия его отсутствия в полуклассической

Распределение и направленность трещин при электрическом пробое неоднородных сред

Электрический пробой и разрушение кусковых фрагментов материалов

Электрический пробой твердых диэлектриков

Электрический разряд и пробой в вакууме



© 2025 Mash-xxl.info Реклама на сайте