Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задача п тел классические интегралы

О задаче трех и более тел. Задача п тел (п 2) состоит в следующем. В пустоте находятся п материальных точек, взаимодействующих по закону всемирного тяготения Ньютона. Заданы начальные положения и скорости точек. Требуется найти положения всех точек как функции времени. Эта задача не решена до сих пор. Более того, показано, что даже в случае трех тел помимо классических интегралов, существование которых следует из общих теорем об изменении количества движения, кинетического момента и кинетической энергии, дифференциальные уравнения движения не имеют других интегралов, которые выражались бы через алгебраические или через однозначные трансцендентные функции координат и скоростей точек.  [c.244]


Как известно, дифференциальные уравнения задачи п тел допускают десять классических интегралов шесть интегралов количества движения, три интеграла площадей и один интеграл энергии, которые соответствуют законам сохранения количества движения, кинетического момента и механической энергии системы. Эти интегралы обладают тем свойством, что они алгебраически содержат координаты и скорости точек. На вопрос, существуют ли другие подобные интегралы, отвечает теорема Брунса  [c.108]

Прежде всего найдем для любого п > 1 десять классических интегралов задачи п тел. Пз (1) и (2) получим  [c.40]

Спрашивается, в каких еще случаях возможно существование четвертого алгебраического интеграла. В то время, когда Ковалевская писала свою работу, ]Брунсом был исследован вопрос об алгебраических интегралах задачи п тел. Именно он доказал, что задача не имеет других алгебраических интегралов, кроме классических. Следовательно, остальные интегралы должны быть трансцендентными. Пуанкаре изучал более общий вопрос —об однозначных решениях уравнений динамики в канонической форме. Он показал, что, вообще говоря, не существует даже однозначного трансцендентного первого интеграла, отличного от классических. Однако эта  [c.167]

Д. А. Граве исследовал вопрос о нахождении всех интегралов системы дифференциальных уравнений задачи трех тел, не зависящих от закона взаимодействия. Он доказал, что такими интегралами являются только классические. Эту теорему на задачу п тел обобщил Э. Ловетт  [c.109]

Еще в 1878 г. Ф. А. Слудский высказал без доказательства теорему о том, что необходимым условием общего соударения свободных материальных точек, взаимно притягивающихся по закону Ньютона, является аннулирование всех постоянных интегралов площадей в движении системы относительно ее центра инерции. Подобную мысль высказал и К. Вейерштрасс Он показал, что при отличной от нуля нижней границе минимума взаимных расстояний точек системы координаты этих точек являются голоморфными функциями времени в полосе комплексной i-плоскости, ограниченной двумя симметричными относительно действительной оси прямыми. Исследуя вопрос о существовании соответствующих начальных условий движения, он пришел к заключению, что по крайней мере для задачи трех тел такие начальные условия не только существуют, но и представляют собой общий случай, в то время как парное и, тем более, общее соударение точек в конечный момент может произойти только при особых условиях. Вейерштрасс без доказательства также заметил, что координаты точек системы разлагаются в окрестности момента парного соударения t = в ряды по целым положи-J тельным степеням (fj — i) и зависят от бге — 2 произвольных постоянных. Эту теорему доказал П. Пенлеве . Он показал также, что если движение в классической задаче п тел, регулярное до момента ti, в этот момент нарушает регулярность, то минимум взаимных расстояний точек при t-у ti стремится к нулю. Если п = 3, то единственной особенностью движения может быть только парное или общее соударение тел в момент Если и 3, могут быть и такие особенности, когда некоторые из взаимных расстояний, не стремясь ни к каким определенным пределам при t ti, осциллируют в каких угодно границах. П. Пенлеве установил, что начальные условия движения, соответствующие парному соударению, должны удовлетворять определенным аналитическим соотношениям, однозначным относительно координат и алгебраическим относительно скоростей, если по крайней мере массы трех точек отличны от нуля. Найти эти условия удалось Т. Леви-Чивита и Г. Бискончини . Однако эти условия выражаются очень сложными рядами и могут быть использованы непосредственно только в случае, когда соударение происходит через весьма малый промежуток времени после начального момента.  [c.112]


Каждый интеграл задачи п тел, в которой входят алгебраически декартовы) компоненты скоростей гравитирующих точек координаты могут входить любым образом, алгебраически или неалгебраически), является следствием известных десяти классических интегралов.  [c.177]

Если найдено I интегралов д = д, . .., д = д1 системы (11), то они называются независимыми, если функциональная матрица, образованная из та + 1 частных производных этих интегралов по Хк, I, имеет ранг I. Далее, интеграл называется алгебраическим, если он является алгебраической функцией от Хк, I. Следовательно, выгпе у нас были найдены в случае п > 1 десять алгебраических интегралов системы дифференциальных уравнений задачи п тел (4) легко видеть, что они независимы. Брунс [5] доказал интересную теорему не существует ни одного алгебраического интеграла системы (4), который был бы независимым от десяти классических. Отсюда следует, что каждый алгебраический интеграл системы (4) будет алгебраической функцией уже известных десяти интегралов. С другой стороны, в силу теоремы существования система (4) должна иметь 6п независимых интегралов, но они при 6п > 10 не могут быть все алгебраическими. Так как доказательство теоремы Брунса очень длинно, оно не может быть, к сожалению, здесь помещено.  [c.42]

П. Пенлеве обобщил эту теорему, освободив ее от требования алгебраического характера координат. Он доказал таким образом, что всякий интеграл задачи трех тел, являющийся произвольной функцией координат и алгебраической функцией скорости этих тел, есть алгебраическая комбинация классических интегралов.  [c.108]

Вместе с развитием неголономных связей и теории общего их вида приобретают значение новые методы в поисках решений классических задач аналитической механики. Такие новые методы базируются, можно сказать, на двух теоремах. Первая теорема высказана в работах П. В. Воронца в первых десятилетиях нашего века в следующей формулировке каждый первый интеграл уравнений движения некоторой механической системы может считаться уравнением связи, наложенной на систему с соответствующими реакциями, равными нулю . Действительно, примем данный первый интеграл за связь и составим уравнения движения с множителем. Далее, учитывая, что первый интеграл тождественно удовлетворяет левым частям всех уравнений с множителем, мы придем к тому, что данный множитель должен быть равен нулю. Обратная же теорема должна читаться следующим образом. Положим, дана механическая система с заданными, пусть идеальными в смысле Лагранжа — Даламбера, связями и активными силами. Имеются динамические дифференциальные уравнения данной системы. Положим, требуется найти янтеграл заданного вида для дайной системы уравнений. Тогда, 1при-няв данный интеграл за уравнение дополнительной связи, будем составлять уравнения движения с подобной связью. Интеграл же может быть любой аналитической структуры, поскольку мы умеем уже составлять уравнения движения при связях любой, если можно так сказать, неголономности. Далее, если мы решим расширенную систему уравнений движения, т. е. уравнений с множителем вместе с уравнением связи, то могут быть две возможности находятся уравнения движения системы, т. е. обобщенные координаты основной задачи в функциях времени и вместе с ними определяется множитель в функции времени. Но, если при каких-либо параметрах системы, или предполагаемого первого интеграла, или при некоторых начальных данных, множитель обратится в ноль, то тогда действительно уравнение связи окажется первым интегралом данной задачи. Возьмем, к примеру, классическую задачу о движении твердого тела вокруг неподвижной точки. Мы знаем, с каким трудом добывались решения этой задачи и как, по существу, их мало. Всего три случая — общего решения, да и общность относится только к начальным условиям, а на другие параметры — распределение масс и положение центра тяжести — налагаются определенные условия. Частных интегралов больше, но все они находились с трудом (вспомним, например, случай Гесса). Данные же методы наиболее естественны нри выяснении вопроса, является ли заданная связь -первым интегралом уравнений движения данной системы как свободной.  [c.13]



Смотреть страницы где упоминается термин Задача п тел классические интегралы : [c.17]    [c.512]    [c.256]    [c.486]    [c.319]    [c.387]   
Лекции по небесной механике (2001) -- [ c.40 ]



ПОИСК



Газ классический

Интегралы задачи

Классические интегралы

Полный интеграл. Теорема Якоби. Метод разделения переменных. Переменные действие-угол. Метод характеристик. Метод Фока. Задача Коши. Классическая механика и квантовая механика. Уравнение Гамильтона-Якоби вр- представлении. Элементы гамильтоновой оптики Каноническая теория возмущений

Теорема Брунса о несуществовании алгебраических первых интегралов задачи трех тел, отличных от классических



© 2025 Mash-xxl.info Реклама на сайте