Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закон Кирхгофа излучения черного тел

Напомним еще раз, что закон Кирхгофа относится только к температурному излучению, и в случае, когда свечение обусловлено другими причинами, он не имеет силы. Так, например, при фото- или хемилюминесценции интенсивность свечения в целом ряде спектральных областей гораздо выше, чем у температурного излучения черного тела при температуре люминесцирующего тела. Закон Кирхгофа настолько характерен для температурного излучения, что может служить самым надежным критерием для распознавания природы свечения свечение, не подчиняющееся закону Кирхгофа, заведомо не является температурным.  [c.694]


На основании общих термодинамических представлений Кирхгоф показал (1895), что е = а независимо от температуры тела, причем зто равенство справедливо для каждой длины волны в отдельности. Это означает, что коэффициент излучения черного тела равен единице (е = 1), т. е. черное тело является наиболее эффективным излучателем тепловой радиации. Соотношение (11.1) при е= I для черного тела было теоретически получено Больцманом (1884) н поэтому называется законом Стефана-Больцмана, а ст - постоянной Стефана-Больцмана. Закон Стефана-Больцмана показывает, что мощность излучения поверхности черного тела зависит только от температуры и не зависит от физических свойств поверхности.  [c.69]

В соответствии с законом Кирхгофа для всех тел, независимо от их физических свойств, отношение плотности потока собственного излучения к его поглощательной способности при одинаковых температурах и длине волны излучения является величиной постоянной и равной плотности потока излучения абсолютно черного тела. Из уравнений (46) и (52) коэффициент теплового излучения топки  [c.180]

Эта формула выражает закон Кирхгофа количество испускаемого телом при некоторой температуре монохроматического теплового излучения равно произведению (относящихся к той же температуре и той же длине волны) коэффициента поглощения этого тела и количества испускаемого абсолютно черным телом излучения.  [c.192]

Это уравнение показывает, что отношение потока излучения газового объема с температурой Гг на поверхность F t к его поглощательной способности, подсчитанной для черного излучателя с температурой 7 = Гг и поверхностью For, не зависит от природы газа и равно излучению черного тела, имеющего температуру Гг и поверхность Ра. Из уравнения (16-3) следует, что если газ поглощает лучистую энергию, то он должен и излучать ее. Можно показать, что закон Кирхгофа справедлив и для монохроматического излучения газового объема.  [c.278]

Необходимо отметить, что полностью отражающая стенка применительно к падающей на стенку тепловой радиации не обязательно требует равенства нулю коэффициента поглощения (Л = 0, / =1). При термодинамическом равновесии стенки с поступающей на нее тепловой радиацией (согласно закону Кирхгофа) падающее на стенку тепловое излучение и эффективное излучение стенки одинаковы и равны излучению черного тела при температуре стенки  [c.435]


Для абсолютно черного тела С = Со = 5,67 Вт/(м К ), для реальных серых тел С = еСо. Величина 8 называется степенью черноты и характеризует излучательную способность поверхности серого тела по отношению к абсолютно черному телу при той же температуре (О в < 1), Согласно закону Кирхгофа, чем больше тело излучает тепла, тем больше оно может его поглотить, поэтому при равновесном излучении степень черноты характеризует и поглощательные свойства тел. Значения е для некоторых материалов приведены в табл. 22.3.  [c.820]

Если среда находится в локальном термодинамическом равновесии при температуре Т (в кельвинах), то закон Кирхгофа для излучения черного тела дает разумное приближение для излучаемой энергии ([89], гл. 1). При этом можно приближенно записать  [c.178]

Анализ условия, что стенки полости должны быть полностью отражающими, является значительно более трудным, чем рассмотрение чисто геометрических ограничений. Если коэффициент отражения стенок меньше единицы, то должны, по-видимому, присутствовать еще дополнительные поправочные члены. Однако сами эти члены должны стремиться к нулю, если стремится к нулю коэффициент отражения стенок, так как в соответствии с законом Кирхгофа коэффициент излучения при этом стремится к единице, что вновь приводит к идеальным условиям черного тела внутри полости.  [c.317]

Закон Кирхгофа остается справедливым и для монохроматического излучения. Отношение интенсивности излучения тела при определенной длине волны к его поглощательной способности при той же длине волны для всех тел одно и то же, если они находятся, при одинаковых температурах, и численно равно интенсивности излучения абсолютно черного тела при той же длине волны и температуре, т. е. является функцией только длины волны и температуры  [c.466]

Закон Вина. Закон Стефана—Больцмана, хотя и определяет вид зависимости интегральной излучательной способности абсолютно черного тела от температуры, не дает никаких сведений о частотной зависимости энергии излучения, т. е. остается неизвестным явный вид универсальной функции Кирхгофа. Важным шагом вперед в указанном направлении является так называемый закон Вина.  [c.327]

Это соотношение показывает, что все черные тела имеют одно и то же распределение энергии излучения по спектру, а их энергетическая светимость одинаково изменяется с температурой. Следовательно, открывается возможность экспериментальной проверки следствий закона Кирхгофа и опытного определения вида универсальной функции f X,T). Для этого необходимо создать тепловой излучатель, поглощающий все падающие на него лучи, и исследовать его испускательную способность как функцию длины волны и температуры. Экспериментальное решение такой задачи базируется на использовании очень простой модели черного тела.  [c.405]

Закон Кирхгофа доказан, таким образом, для любого тела. Из приведенных рассуждений ясно, что замененный нами внутри стенки полости участок da для наблюдателя, следящего за посылаемым этим участком излучением, ничем не отличается от других черных участков стенки. Действительно, в единицу времени он испускает внутрь полости излучение в количестве Eda и отражает из общего падающего на него потока излучения (1 — A)Eda. Общее количество посылаемого им излучения есть da[E -f (1 — Л)е] = = Eda (в силу доказанного выше соотношения E/A — г), т. е. равно излучению любого черного участка стенки того же размера.  [c.690]

Если осуществить теоретическое черное тело при помощи бесконечной совокупности гармонических осцилляторов, каждый из которых дает отдельную монохроматическую линию, а все вместе — сплошное черное излучение, то, пользуясь законами, управляющими поведением этих осцилляторов, можно прийти к закону черного излучения такой системы. Общие же соображения, лежащие в основе закона Кирхгофа, показывают, что закон излучения, найденный для одного черного тела, справедлив и для любого другого черного тела, т. е. все они дают один и тот же тип излучения — черное излучение.  [c.698]


Закон Кирхгофа поставил перед теорией теплового излучения важную задачу — найти аналитическое выражение функции ev, т, представляющей собой испускательную способность абсолютно черного тела.  [c.136]

В 1860 г. Кирхгоф ввел понятие абсолютно черного тела как тела, полностью поглощающего падающее на него излучение для любой частоты и при любой температуре. У такого тела поглощательная способность равна единице. Таким образом, становится понятным смысл функции ф( , Т) в законе Кирхгофа это есть испускательная способность абсолютно черного тела.  [c.38]

Отношение поверхностной плотности потока собственного излучения тела к его поглощательной способности одинаково для всех тел, находящихся при одной и той же температуре, и равно поверхностной плотности потока собственного излучения абсолютно черного тела при той же температуре. Это и есть закон Кирхгофа, представленный уравнением (1.31).  [c.254]

Закон Кирхгоф а—отношение потока излучения любого тела Е к его коэффициенту поглощения а, при данной температуре не зависит от природы шла и равно потоку излучения абсолютно черного тела при той же температуре  [c.410]

Уравнение (2.347) составляет содержание закона Кирхгофа отношение энергии излучения тела к его поглощательной способности для всех тел одинаково и равно энергии излучения абсолютно черного тела при той же температуре.  [c.211]

Закон Кирхгофа отношение плотности потока излучения серого тела к его поглощательной способности не зависит от природы тела и равно плотности потока излучения абсолютно черного тела при той же температуре.  [c.127]

Закон Кирхгофа устанавливает количественную связь между энергиями излучения и поглощения ДЛЯ серых и абсолютно черного тел.  [c.106]

Если газы поглощают энергию, то, согласно закону Кирхгофа, они и излучают ее. Для определения относительной излучательной способности, представляющей лучеиспускательную способность газов в долях от излучения абсолютно черного тела, или степени черноты газов, служит формула  [c.191]

Закон Кирхгофа (1882 г.) устанавливает количественную связь между энергиями излучения и поглощения поверхностями серых и абсолютно черны Х тел. Этот закон можно получить из баланса лучистой-энергии для излучающей системы, состоящей из относительно большого замкнутого объема с теплоизолированными стенками и помещенных в него тел. Для каждого из этих тел в условиях термодинамического-равновесия энергия излучения равна поглощенной энергии  [c.374]

Зависимость (16-50) выражает закон Кирхгофа. Согласно этому закону отношение энергии излучения к энергии поглощения не зависит от природы тел и равно энергии излучения абсолютно черного тела при той же температуре. Используя (16-49) и (16-50), получаем  [c.374]

Закон Кирхгофа. Закон Кирхгофа устанавливает связь между излучательной и поглощательной способностями тела. Эту связь можно получить из рассмотрения лучистого обмена между двумя поверхностями. Пусть имеются две поверхности, одна из которых — абсолютно черная. Расположены они параллельно и на таком близком расстоянии, что излучение каждой из них обязательно попадает на другую. Температура, излучательная и поглощательная способности этих поверхностей соответственно равны Т, Е, А, То, Ео и Ло=1, причем 7 >7 о (рис. 5-5). Составим энергетический баланс. С единицы левой поверхности в единицу времени излучается энергия в количестве Е. Попадая на черную поверхность, эта энергия полностью ею поглощается. В свою очередь черная поверхность излучает энергию в количестве Eq. Попадая на серую поверхность, эта энергия частично в. количестве АЕ поглощается ею, остальная часть в количестве (1 — —А)Еа отражается, снова попадает на черную поверхность и полностью ею поглощается. Таким образом, для левой поверхности приход энергии равен AEq, а расход — Е. Следовательно, баланс лучистого обмена  [c.156]

Закон Кирхгофа. Закон Кирхгофа устанавливает связь между собственным излучением тела и его поглощательной способностью. Эту связь можно получить из рассмотрения лучистого обмена между двумя поверхностями. Пусть имеются две поверхности, одна из которых — абсолютно черная. Расположены они параллельно и на таком близком расстоянии, что излучение каждой из них обязательно попадает на другую. Температуры, собственное излучение, поглощательные способности этих поверхностей соответственно равны Т, Е, А, Тд, Eg и Лд = 1, причем Т>Т (рис. 5-5). Составим энергетический баланс. С единицы левой поверхности в единицу времени излучается энергия в количестве Е. Попадая на черную поверхность, эта энергия полностью ею погло-  [c.167]

В такой форме закон Кирхгофа формулируется так при термодинамическом равновесии отношение собственного излучения к поглощательной способности для всех тел одинаково и равно собственному излучению абсолютно черного тела при той же температуре.  [c.168]

В такой форме закон Кирхгофа показывает, что при термодинамическом равновесии поглощательная способность и степень черноты тела численно равны. Так как для реальных тел поглощательная способность всегда меньше единицы, то из соотношения (л) следует, что собств енное излучение этих тел всегда меньше собственного излучения абсолютно черного тела при той же температуре. Следовательно, при любой температуре излучение абсолютно черного тела является максимальным.  [c.168]


Поэтому, строго говоря, поглощательная способность любого тела должна определяться при условии, что его температура равна температуре абсолютно черного источника излучения. В этом случае, согласно закону Кирхгофа, поглощательная способность любого тела при температуре Т численно совпадает с величиной его степени черноты при той же температуре, вне зависимости от величины этой температуры.  [c.47]

Закон Кирхгофа. Для всякого тела излучательная и поглощательная способности зависят от VeMnepaTypbi и длины волны. Различные тела имеют различные значения Е и А. Зависимость между ними устанавливается законом Кирхгофа. Рассмотрим лучистый теплообмен между двумя параллельными пластинами с неодинаковыми температурами, причем первая пластина является абсолютно черной с температурой Т,, вторая — серой с температурой Т. Расстояние между пластинами значительно меньше их размеров, так что излучение каждой из них обязательно попадает на другую.  [c.464]

Если поглощенная средой лучистая энергия переходит вся в теплоту, не вызывая люминесценции, то согласно закону Кирхгофа отношение излучательной способности среды к ее поглощательной опособности к равняется излучательной способности или интенсивности излучения черного тела / при данной местной температуре Т  [c.266]

Отсюда следует, что вх = Ах- Это и есть закон Кирхгофа ). Следовательно, при данной температуре тело излучает количество энергии Е,)х = вцЕх, которое равно части энергии излучения черного тела А Е , поглощаемой при той же температуре данным телом. Этим законом пользуются при измерениях температуры лламени по методу обращения линий.  [c.37]

И. металлов. Большинство металлов обладает избирательным И. Для определения ур-ий И. металла достаточно знать функциональную зависимость его коэф-та поглощения а уот длины волны и темп-ры, чтобы на основе закона Кирхгофа связать его И. с излучением черного тела. Эта зависимость м. б. установлена в настоящее время лишь экспериментальным путем. Попытка теоретич. установления законов излучения металлов была выполнена Друде и Планком, установившими на основании электромагнитной теории света вависимость между коэфициенто.м поглощения чистых металлов и их электропроводностью. Эта зависимость мо кет быть выражена в следующем виде  [c.498]

По видам излучения И. с. разделяются на два класса 1) И. с. температурного, или калорического, излучения, в к-рых излучение света есть следствие нагревания светящегося тела до высокой темп-ры. В зависимости от рода излучающего тела этот класс И. с. может быть разделен на 3 группы а) И. с. черного излучения, б) И. с. серого излучения, в) И. с. избирательного (или селективного) излучения. Основой теории излучения И. с. этого класса являются законы излучения черного тела (законы Планка, Вина и закон Стефана-Больцмана, см. Излучение) и общим законом для всех трех групп, объединяющим излучения нечерных тел с черным излучением, — закон Кирхгофа. 2) И. с. люминесцирующего излучения, работающие на принципе одного из видов люминесценции, процесса, связанного с излучением света путем возбуждения атомов за счет какого-либо вида энергии, непосредственно воздействующего на вещество. Из различных видов люминесценции в И. с., используемых на практике, наиболее применима электролюминесценция (светящийся разряд в газах) кроме того в природе встречаются явления, связанные с хемилюминесценцией, или выделением лучистой энергии ва счет энергии химич. превращений (свечение медленного окисления — свечение живых организмов). Класс люминесцирующих И. с. является по преимуще ству классом И. с. холодно I о свечения. Повышение темп-ры, имеющее место при работе подобных И. с., служит побочным фактором, не участвующим активно п процессе излучения радиаций. В нек-рых случаях однако наряду с процессом люминесценции зыделение тепла при работе И. с. достигает таких размеров, что излучение может иметь смешанный характер к подобным И. с. например м. б. отнесены лампы с вольтовой дугой (см.), обладающие лю-минесцирующим свечением дуги и темп-рным излучением раскаленных электродов теория люминесцирующего свечения тесно связана с теорией строения атома и теорией спектров. Электролюминесцирующие И. с. могут быть разделены на группы в зависимости от рода газового разряда (дуговой, тлеющий, без-электродный) и в зависимости от характера излучающей среды (пары металлов, перманентный газ).  [c.242]

Наконец, интересны.м применением теории Ми является расчет теплового излучения межзвездными пылинка.ми, которое составляет основную потерю их внутренней энергии и поэтому определяет их температуру. Так как излучаемые волны лежат в далекой инфракрасной области, т. е. и.меют длины волн значительно большие, чем размер частиц, мы должны пользоваться формулами для Спогл., вытекающими из теории Ми (гл. 14). Согласно закону Кирхгофа, излучение в Спогл. раз больше значения, рассчитанного на основе излучения черного тела. Основываясь на этом, ван де Хюлст (1946, 1949) оценил, что температура межзвездных пылинок, будь то металлических или диэлектрических, скорее равна 10—20°, чем традиционному значению з°к.  [c.526]

Эта общая формула называется законом Кирхгофа. Идеальное твердое тело, для которого а(у,Т) = 1, называется абсолютно черным телом его испускательная способность равна интенсивност,и излучения I и, Ту  [c.281]

Для нахождения интенсивности излучения пламени /пл при данной длине волны X используется закон Кирхгофа, согласно которому отношение излучательной способности нечерного тела к его поглощательной способности равно излучательной способности абсолютно черного тела при той же длине волны и температуре. Считая, что интенсивность излучения /дл выражает излучательную способность пламени, получаем  [c.254]

Закон Кирхгофа. Пусть в замкнутой полости (рис. 35) находятся два тела одно черное — А, а второе нечерное — В. При равновесии температуры тел и излучения одинаковы, а количество энергии, излучаемое за любое время единицей площади поверхности каждого тела, равно количеству энергии, поглощаемому им за то же время.  [c.210]

Зависн.мость (18.16) — математическое выражение закона Кирхгофа отношение плотности потока излучения серого тела к его поглощательной способности не зависит от природы тела и равно плотности потока излучения абсолютно черного тела при той же температуре.  [c.222]

Интенсивность собственного излучения можно выразить через интенсивность абсолютно черного тела и коэффициент поглощения величиной la idl. Тогда изменение интенсивности излучения за счет поглощения и излучения среды выразится разностью между поглощенной энергией и энергией излучения в слое толщиной dl (для равновесной системы), что приводит к дифференциальному уравнению (18-9). В нем, как и ранее, Ii—-спектральная интенсивность излучения в направлении / /о—спектральная интенсивность излучения абсолютно черного тела при температуре среды. Индекс Ь> здесь опущен ради упрощения записи. Зависимости (18-9) можно придать другой вид, учитывая, что согласно закону Кирхгофа (16-53) для поглощающей среды lQ=Tif4Tta  [c.422]



Смотреть страницы где упоминается термин Закон Кирхгофа излучения черного тел : [c.145]    [c.18]    [c.22]    [c.153]    [c.221]    [c.392]    [c.127]    [c.157]   
Распространение и рассеяние волн в случайно-неоднородных средах Т.1 (0) -- [ c.178 ]



ПОИСК



Закон Кирхгофа

Закон излучения Кирхгофа

Законы излучения

Кирхгофа

Кирхгофа излучения

Черный



© 2025 Mash-xxl.info Реклама на сайте