Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система железо — серебро

Диаграммы состояния типа железо — цементит (с эвтектикой и эвтектоидом) системы циркония с серебром, бериллием, кобальтом, хромом, медью, железом, марганцем, молибденом, никелем, ванадием, вольфрамом, водородом.  [c.443]

Особенностью кристаллизации металла в паяных швах является также выраженная ликвация. Кристаллизация в условиях пайки приводит к увеличению степени ликвации по сравнению со сплавом того же состава, но кристаллизующимся в большем объеме. Это увеличение в системе железо—медь составляет 20%, в системе медь—серебро 9%, в системе алюминий—цинк 10%.  [c.112]


Быстро растущий в последнее время интерес к поверхностям раздела станет понятным, если проследить историю развития композитов с металлической матрицей. Ранние работы по композитным материалам были направлены на выявление принципов, определяющих их эксплуатационные характеристики. Для этой цели, были удобны простые модельные системы. При выборе модельных систем руководствовались в основном совместимостью упрочните-ля и матрицы модельные системы состояли из матриц (нанример,. серебра или меди), химически малоактивных но отношению к упрочнителям (например, вольфраму или окиси алюминия). Хотя в этих работах и признавалась важная роль поверхностей раздела, модельные системы позволяли сравнительно легко получать тип поверхности, обеспечивающий необходимую передачу нагрузки от одного компонента композита к другому. В системах, представляющих большой практический интерес, матрицами служат обычные конструкционные материалы, такие, как алюминий, титан,, железо, никель они обладают большими реакционной способностью и прочностью, чем матрицы модельных систем. Повышенная реакционная способность затрудняет управление состоянием поверхности раздела, а для передачи больших нагрузок требуется более высокая прочность этой поверхности. Таким образом, состояние поверхности раздела становилось все более важным фактором по мере того, как интересы исследователей перемещались от модельных систем к перспективным инженерным материалам.  [c.12]

Другим примером частого использования контактов из материала системы серебро—железо являются бытовые электроплитки. Эти контакты имеют формы заклепок или кнопок, получаемых из прутков, приготовленных по методу порошковой металлургии.  [c.432]

Наконец, системы элементов, не образующих между собой ни твердых, ИИ жидких растворов, отнесены к четвертому типу диаграмм состояния (рис. 77, г). В таких сплавах трещины не образуются, как бы ни была низка температура затвердевания более легкоплавкой примеси. При любой разности температур затвердевания обоих элементов в такого рода системах эффективный интервал кристаллизации в идеальном случае равен нулю, а в реальных сплавах определяется концентрацией других элементов. В сварочной ванне, кристаллизующейся в соответствии с диаграммой этого рода (рис. 77, г), образуются дендриты более тугоплавкого элемента, а не смешивающаяся с ним жидкость вытесняется фронтом растущих кристаллов на поверхность сварного шва. Нерастворимы в железе в твердом и жидком состоянии висмут, свинец и серебро. Висмут не растворим также в хроме.  [c.196]


Методом внутреннего окисления получают ДКМ на основе железа, меди, никеля, серебра упрочняющей фазой, в которых являются оксиды алюминия, бериллия, кремния, титана и хрома. Недостатком этого метода является ограниченность по применяемым системам легирования, высокая трудоемкость метода.  [c.803]

Золото образует непрерывные ряды пластичных твердых растворов с никелем, серебром, палладием, медью. На диаграммах состояния Аи—Ni и Аи—Си имеет место минимум температуры плавления наинизшая температура плавления твердых растворов меди, содержащих 18% Аи, —905° С и 82,5% Аи — 9 ° С. Несколько менее интенсивно снижают температуру плавления золота железо и кобальт, образующие с ним диаграммы состояния перитектического типа со стороны золота в системе Аи—Fe образуется непрерывный ряд твердых растворов с наинизшей температурой плавления, со стороны золота в системе Аи—Со — эвтектика.  [c.135]

Палладиевые припои. Палладиевые припои, несмотря на их дороговизну и дефицитность, в последнее время интенсивно исследуют и рекламируют. Палладий в качестве основы припоев интересен во многих отношениях. Во-первых, он менее дефицитен, чем другие металлы платиновой группы во-вторых, образует непрерывный ряд твердых растворов с металлами первой (серебро, медь, золото) и восьмой (железо, кобальт, никель) групп периодической системы, а со многими другими элементами образует относительно широкую область твердых растворов.  [c.139]

Способность палладия образовывать непрерывный ряд твердых растворов с металлами группы железа и ограниченные твердые растворы с металлами пятой и шестой групп периодической системы (Nb, Та, Мо, W), в противоположность металлам первой группы (Ag, Си, Аи), позволяют палладиевым сплавам конкурировать с никелевыми припоями при пайке жаропрочных сплавов и серебряно-медными припоями при пайке тугоплавких сплавов. В последнее время за рубежом наблюдается тенденция к замене известного эвтектического припоя, содержащего 72% Ag и 28% Си, а также припоев на его основе при пайке вакуумных приборов (в электронике, радиотехнике и т. д.) сплавами, содержащими палладий упругость пара серебра при температуре его плавления 960° С равна 2,65-10 мм рт ст., а палладия при температуре его плавления 1552° С 1,03-10 мм рт. ст.  [c.139]

В основу этой книги положены данные, полученные в лаборатории электроосаждения металлов Института физической химии АН СССР. Б ней рассматривается электрохимическое поведение различных металлов, представляющих отдельные группы периодической системы элементов. При этом из каждой группы или подгруппы выбраны именно те металлы, электрохимические свойства которых изучены наиболее полно. Вначале рассматриваются серебро, цинк, олово, свинец, осаждение и растворение которых протекает без особых затруднений. Затем несколько глав посвящено электрохимическому поведению железа, никеля.  [c.3]

Результаты изучения автором работы [220] адгезии алмаза к металлам показали, что металлы, наиболее активные к углероду (группы IVA—VIA периодической системы), имеют наименьшую температуру адгезии повышение этой температуры наблюдается на железе и далее на таких металлах, кгк кобальт, никель, платина. Медь и серебро, инертные к углероду, имеют высокую температуру адгезии.  [c.68]

Соединения, паянные припоями системы Ад — Си — 2п — Сё, теплостойки немного выше 400° С (табл. 56), а припои системы Ад —-Си — 2п теплостойки до 500° С в связи с упрочнением твердого раствора на основе серебра. При пайке сталей двухфазные припои на основе Ад — Си имеют важное преимущество по сравнению с припоями на основе а-латуней они не проникают по границам зерен. Это связано с более низкой температурой плавления первой системы припоев, когда диффузионные процессы протекают с меньшей скоростью, и с малой растворимостью серебра в железе.  [c.213]

Способность палладия образовывать непрерывный ряд твердых растворов с металлами группы железа и ограниченные твердые растворы с металлами пятой и шестой групп периодической системы (ЫЬ, Та, Мо, W) в противоположность металлам первой группы (Ад, Си, Аи) позволяет палладиевым сплавам конкурировать с никелевыми припоями при пайке жаропрочных сплавов и серебряно-медными припоями при пайке тугоплавких сплавов. В последнее время за рубежом заметна тенденция к замене известного эвтектического припоя, содержащего 72% Ад и 28% Си, а также припоев на его основе при пайке вакуумных приборов, (в электронике, радиотехнике и т. д.), сплавами, содержащими  [c.234]


Несмотря на разнообразие свойств, благородные металлы обнаруживают и некоторое сходство. Прежде всего все они переходные элементы V и VI периодов, где расположены последовательными рядами с №44 по 47 и с № 76 по 79. По размещению в группах Периодической системы рутений и осмий сходны с железом, палладий и платина — с никелем, родий и иридий — с кобальтом, а золото и серебро — с медью.  [c.273]

Золото образует непрерывный ряд твердых растворов с никелем при значительном различии атомных диаметров обоих металлов и ограниченные области твердых растворов с кобальтом, атомный радиус которого ближе к атомному радиусу золота. Серебро не смешивается с кобальтом и никелем ни в твердом, ни в жидком состоянии. Медь, образующая непрерывный ряд твердых растворов с никелем, не полностью смешивается даже в жидком состоянии с железом и кобальтом, имеющими те же атомные диаметры, что и никель, принадлежащими к той же группе периодической системы. Разница между параметрами меди и серебра и меди и золота одинакова и довольно значительна, однако Си и Ли обладают взаимной неограниченной растворимостью, а Си и Kg только незначительно растворимы друг в друге.  [c.117]

Теплопроводностью называют способность металлов передавать тепло от более нагретых к менее нагретым участкам тела. Серебро, медь, алюминий обладают большой теплопроводностью. Железо имеет теплопроводность примерно в три раза меньше, чем алюминий, и в пять раз меньше, чем медь. Теплопроводность имеет большое значение при выборе металла для деталей. Например, если металл плохо проводит тепло, то при нафеве и быстром охлаждении (термическая обработка, сварка) в нем образуются трещины. Некоторые детали машин (поршни двигателей, лопатки турбин) должны быть изготовлены из материалов с хорошей теплопроводностью. В системе СИ теплопроводность имеет размерность Вт/ (м К).  [c.14]

В целях экономии часто применяот катод, представляющий собой металл - носитель, покрытый слоем платины. Металлом - носителем могут быть серебро, медь, бронза, купроникель, железо, свинец, латунь, титан. Стоимость такого катода составляет примерно 30 % стоимости системы анодной защиты. Размеры их невелики (6,2Б ом в длину и 4 сы в диаметре), поетому такие катоды можно применять в аппаратах небольших объёмов.  [c.78]

Описаны сплавы кремния с сурьмой, висмутом, кобальтом, эологгом, свннцом, серебром, оловом и цинком [461. В двойных системах кремния с указанными металлами не обнаружено никаких соединений. Получены также сплавы с алюминием (47, 71. Сплавы на основе железа можно покрывать кремнием или сплавлять с ним [59]. Отливки из сплавов железа с высоким содержанием кремния (15 )о) стойки против коррозии, однако они не поддаются обработке резанием. Эти и другие сплавы кремнии и железа, а также кремния, углерода и железа подробно изучались Грейнером и сотр. [331. Те же авторы рассматривают кремнистые и кремнсмаргание-вые стали, в том числе стали, которые содержат также никель, молибден, хром и ванадий.  [c.338]

Были исследованы бинарные системы и диаграммы состояния, построенные для целого ряда сплавов тория. Для многих из исследоваииых систем характерно образование нескольких интерметаллических соединена. Никель и кобальт образуют по пять иитерметаллических соедииений с торием железо и алюминий - - по четыре, а марганец, висмут, кремний и мель — по три. Для некоторых других металлов характе 1но образование с торием одного или двух интерметаллических соединений. Некоторые иитерметалли-ческие соединения торня, главным образом с медью, серебром, золотом, висмутом и свинцом, являются пирофорными.  [c.811]

Разделение работы адгезии на составляющие И а(р) и не всегда удается провести. В реальных неравновесных системах процесс, приводящий к вьфавниванию химических потенциалов, может вызвать изменение равновесной работы адгезии из-за образования химических соединений на фанице фаз. При взаилюдействии жидкости и твердого тела, которое приводит к уменьшению равновесной работы адгезии часто наблюдается эффект, когда в начальный момент жидкость хорошо смачивает твердое тело, а затем, при образовании химических соединений lVy,(p) уменьшается, краевые углы возрастают и жидкая пленка собирается в отдельные капли. Такое ухудшение смачивания часто происходит при контакте жидкого олова с серебром, никелем, железом.  [c.99]

Имеется несколько кратких сообщений о том, что различные дисперсные системы в виде ультрадисперсных порошков перспективны также для защиты от биологического и радиологического оружия, но подробные сведения по этому вопросу отсутствуют. Тем не менее информация о биологических свойствах наночастиц расширяется (например, антимикробные свойства наночастиц серебра, алмаза, а также фуллеренов и других нанообъектов влияние ультрадисперсных порошков железа и других металлов на урожайность зерновых и зерново-бобовых культур, а также на заживление язв и регенерацию тканей и др.).  [c.172]

В периодической системе элементов Д. И. Менделеева золото и серебро размещаются в I группе, а платиноиды — в VIII, образуя вместе с железом, кобальтом и никелем три триады (Fe, Ru, Os Со, Rh Ir Ni, Pd, Pt). Bee благородные металлы являются переходными элементами и в периодической системе располбжены последовательно двумя рядами в 5-м и 6-м периодах с № 44 по 47 (Ru, Rh, Pd, Ag) и с № 76 по 79 (Os, Ir, Pt, Au).  [c.294]

В 1968—1969 гг. в серии работ напр., [428] ) было развито представление о возможности растворения и диффузии ряда благородных и переходных металлов (меди, серебра, железа, кобальта) в элементах III и IV групп (таллий, индий, свинец, олово и др.) по механизму внедрения при не слишком большом размере и малой валентности диффундирующего атома (валентность растворителя должна быть больше валентности примеси). Как показывают оценки, доля атомов, диффундирующих по механизму внедрения, по отношению к движущимся по вакансион-ному механизму достаточно велика, так что этим можно обт яс-нить аномальный характер диффузии в указанных системах, в частности очень низкие значения энергии активации. Дальнейшие исследования с целью подтвердить справедливость предложенного объяснения и установить степень общности полученных результатов представили бы несомненный интерес.  [c.158]


Двойные системы элементов с отсутствием между ними растворимости в твердом или жидком состоянии встречаются весьма редко (железо—серебро, железо—висмут). Наибольшее число двойных систем В—А (припой—паяемый металл), имеющих в настоящее время практическое значение,— это системы с непрерывным рядом твердых растворов и- системы с эвтектикой, в том числе и с неконгруентными химическими соединениями.  [c.34]

Диффузионная райка никеля возможна припоями системы Ni — Мп, №—11% Р, меди — галлием, титана — серебром, медью, никелем, алюминия — цинком. Неперспективна диффузионная пайка никеля эвтектикой N1 — 4% В, алюминия — галлием, железа— серебром из-за незначительной растворимости припоев в паяемом материале,.....  [c.164]

Угол смачивания технического железа серебром довольно большой (70°), что говорит о плохой смачиваемости. Улучшение смачиваемости может быть достигнуто при легировании серебра элементами, образующими между собой и с железом твердые растворы или химические соединения. Было показано, что угол смачивания железа серебром (после пайки при 850—1100° С с флюсом) снижается с 70 до 20° С при добавке в серебро 5% Рс1 [270]. Известный эвтектический припой Пср72 после добавки палладия пригоден для пайки нержавеющих сталей в сухом аргоне без флюса. Добавка к припоям системы Ад — Си — Рс1 0,2— 0,5% Ы способствует еще большему уменьшению контактного угла смачивания жидкого припоя на поверхности сплавов системы N1 —Ре —Со.  [c.233]

При макроскопическом электрофорезе методом подвижной границы разделяющую среду стабилизируют, повышая ее вязкость с помощью сахарозы, желатины или крахмала. Часто в конструкцию электрофоретических камер вводят охладительные змеевики и водяные рубашки . При микроэлектрофорезе методом массопереноса и препаративных разновидностях свободного электрофореза наряду с платиной — универсальным электродным материалом для изготовления анодов — используют цинк, свинец, серебро, молибден, титан, покрытый двуокисью марганца, для изготовления катодов — цинк, титан, железо, никель. Конструктивно разнообразные электрофоретические ячейки отличаются прецизионным исполнением в основном лишь в тех случаях, когда они входят в качестве составного узла в измерительный преобразователь более сложного типа, использующий двойной эффект электрохимический и оптический. Это имеет место при реализации метода подвижной границы (У-образные стеклянные ячейки в сочетании с оптическими теневыми, масштабными или интерференционными измерительными системами) и методов микроэлектрофореза (замкнутые ячейки круглого и прямоугольного сечения, двухтрубные ячейки, открытые ячейки цилиндрические и прямоугольного сечения в сочетании с микроскопом). Устройство микроэлектрофоретических ячеек основных типов схематически представлено на рис. 25, б—г.  [c.231]

Медь и железо известны с глубокой древности (рис. 1). До начала XVIII в. знали только одиннадцать металлов, семь из них, знакомые с давних времен, по повериям алхимиков связывали с планетами солнечной системы — золото с солнцем, серебро — с луной, железо, медь, свинец, олово и ртуть — соответственно с Землей, Венерой, Сатурном, Юпитером и Меркурием. Для мышьяка, сурьмы, цинка и висмута планет не оставалось, может быть поэтому их считали полуметаллами . М. В. Ломоносов, например, писал Должность металлургии тут кончится, когда она поставит металлы и полуметаллы в дело годные .  [c.8]

Тысячелетия назад человек научился добывать и использовать самородные металлы, а затем сплавы меди (бронзу) и железо. В отдаленные времена было известно лишь несколько металлов золото, серебро, медь, олово, свинец, железо, ртуть и сурьма. По мере развития культуры число используемых металлов увеличивалось. К концу XVIII в. оно составляло около 20, а к концу XIX в. достигло 50. В настоящее время из 104 элементов Периодической системы Д. И. Менделеева свыше 75% составляют металлы.  [c.10]

СЕРЕБРЯНЫЙ БЛЕСК, аргентит, минерал, представляет собой сернистое соединение серебра AggS, содержащее 87,1% серебра, а также примеси свинца, меди и железа. Тв. 2— 2,5 уд. в. 7,2. Кристаллизуется в кубической системе, но встречается также в проволочных, древовидных и в зубчатых формах. Имеет черновато-свинцово-серый цвет, отличается ковкостью и. гибкостью. Аргентит служит одной из важнейших руд на серебро. Он является почти постоянным спутником свинцового блеска (PbS) и других сернистых минералов.  [c.281]

В природе кристаллы золота и электрума (см. Золото) чаще встречаются в виде двойниковых и параллельных сростков, чем в виде простых кристаллич. многогранников нередки древовидные сростки, отдельные индивидуумы к-рых вытянуты по оси симметрии второго и третьего порядка. Простые формы в виде кубов или октаэдров обычно также бывают вытянуты. Искусственные перистые кристаллы золота получают электролитич. осаждением из аммиачных растворов хлорной соли. Формалин в присутствии соляной или а.зотной к-т осаждает кристаллы золота ив растворов его хлорида или бромида. Кристаллы золота, похожие по своему габитусу на формы кубич. системы, из раствора хлорида осаждаются эфиром, раствором фосфора в эфире, щавелевой к-той, сульфатом закисного железа и др. Мелкие призмы золота осаждаются на гранях халькопирита, пирита, мышьякового колчедана, цинковой обманки и других минералов. Самородное серебро по своему габитусу весьма сходно с золотом. Оно кристаллизуется в го-  [c.416]

В случае сплавов на основе меди и серебра, когда растворители и растворяемые элементы находятся в одном ряду периодической системы, обнаруживается отчетливая корреляция между формой диаграммы состояния и электронной концентрацией. Зависимости подобного типа можно иногда обнаружить и в других сплавах при условии благоприятного размерного фактора. Например, у сплавов на оотове железа размерный фактор для титана лежит на границе благолриятной зоны, в то время как ряд элементов — ванадий, хром, марганец, кобальт, никель, медь — находится в пределах этой зоны.  [c.146]

Две схемы КУ стоят в классификации конструктивных схем и способов достижения герметичности отдельно конструкция с расплавляемым (запаянным) контактом (схема 24) и конструкция с жидкостным уплотнением (схема 25). Герметизирующей средой в первой из них служат металлы, обладающие смачивающей способностью по отношению к материалу перекрывающего клапана. Выбор металла зависит от температуры прогрева при вакуумировании. Могут использоваться сплав Вуда, олово, золото, серебро, индий, медь — иногда с добавкой порощ-ка железа, никеля. Во второй схеме в качестве перекрывающей среды обычно используют ртуть. Эта схема находит применение в непрогреваемых системах низкого вакуума.  [c.14]


Смотреть страницы где упоминается термин Система железо — серебро : [c.138]    [c.41]    [c.53]    [c.382]    [c.87]    [c.95]    [c.416]    [c.141]    [c.338]    [c.80]   
Металловедение и термическая обработка (1956) -- [ c.329 ]



ПОИСК



Железо — серебро

Серебро

Система железо — бор



© 2025 Mash-xxl.info Реклама на сайте