Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сечения брусьев — Геометрические кручении

При изучении растяжения, сжатия и кручения можно было заметить, что возникающие в сечениях напряжения и перемещения зависели не только от действующих нагрузок, но и от размеров поперечных сечений. Так при растяжении и сжатии они зависели от площади поперечного сечения бруса, а при кручении бруса круглого сечения — от более сложных геометрических характеристик — от полярного момента инерции и полярного момента сопротивления сечения.  [c.241]


В учебниках и справочниках по сопротивлению материалов можно найти формулы и таблицы для определения геометрических характеристик J, , также и для других форм сечений брусьев, работающих на кручение.  [c.188]

Рассмотренные в предыдущих главах расчеты на растяжение (сжатие) и кручение позволяют сделать вывод, что площадь поперечного сечения бруса является геометрической характеристикой его прочности и жесткости лишь при равномерном распределении напряжений по поперечному сечению. При неравномерном рас-  [c.196]

При расчетах на растяжение роль геометрической характеристики прочности и жесткости сечения бруса играет его площадь. При расчетах на кручение, изгиб и сложное сопротивление прочность и жесткость зависят от других, более сложных геометрических характеристик сечений, ознакомлению со свойствами и методами вычислений которых посвящена данная глава книги.  [c.248]

При расчетах на растяжение и сжатие роль геометрической характеристики прочности и жесткости играет площадь сечения. При расчетах на кручение, как мы уже убедились в предыдущей главе, для оценки прочности и жесткости бруса приходится использовать иные, более сложные геометрические характеристики его  [c.246]

Геометрическая характеристика жесткости при кручении бруса трапецеидального поперечного сечения приблизительно равна геометрической характеристике прямоугольного сечения одна сторона которого определяется построением, указанным на чертеже, а другая равна высоте трапеции. В приведенной формуле через Ь обозначается меньшая сторона прямоугольного сечения.  [c.308]

Для стержня (бруса) с поперечным сечением в форме круга или кругового кольца полярный момент инерции характеризует способность стержня сопротивляться деформации кручения. Поэтому полярный момент инерции используется как геометрическая характеристика поперечного сечения при расчетах на кручение. Полярный момент инерции измеряется в единицах длины в четвертой степени (слг, мм , м ).  [c.108]

Форма поперечного сечения бруса Геометрическая характеристика жесткости при кручении (в см )  [c.86]

При расчетах на изгиб и кручение влияние размеров и формы поперечного сечения бруса на его прочность, жесткость и устойчивость учитывается при помощи специальных геометрических характеристик - статических моментов и моментов инерции.  [c.45]

Интеграл, входящий в выражение (г), является геометрической характеристикой жесткости круглого сечения при кручении бруса и носит название полярного момента инерции-.  [c.231]


Здесь Wp - Ур/г — полярный момент сопротивления, являющийся геометрической характеристикой прочности круглого поперечного сечения при кручении бруса.  [c.232]

Следует обстоятельно обсудить вопрос об опасной точке сечения. Опираясь на ранее полученные сведения о пространственном изгибе бруса круглого поперечного сечения, надо напомнить, что наибольшие нормальные напряжения возникают в точках пересечения контура с силовой линией. Видимо, придется также напомнить, как геометрическим сложением моментов определяется положение силовой линии. Далее, напомнив, что при кручении бруса круглого поперечного сечения наибольшие касательные напряжения возникают в точках контура поперечного сечения, приходим к выводу, что в тех точках, где максимальны нормальные напряжения от изгиба, и касательные напряжения будут наибольшими. Таким образом, в общем случае одна из этих точек опасна в частных случаях, когда материал бруса одинаково работает на растяжение и сжатие, обе эти точки одинаково опасны. Определение понятия опасная точка , конечно, остается прежним, т. е. точка, для которой коэффициент запаса минимален. Применительно к рассматриваемой теме это понятие конкретизируется — точка, для которой эквивалентное напряжение максимально. Подчеркиваем, нельзя говорить точка, в которой, .. , так как эквивалентное напряжение — величина расчетная, воображаемая. К сожалению, такая небрежность нередко встречается в учебной литературе.  [c.167]

Совместное действие нормальных и касательных напряжений. При совместном действии изгиба и кручения или кручения и растяжения (сжатия) простое суммирование невозможно ввиду разного характера напряжений (нормальные и касательные). Достоверные расчетные формулы для таких случаев могут быть получены на основании теорий прочности. Так, например, при совместном действии изгиба и кручения опасными являются точки, в которых нормальные напряжения от изгиба и касательные напряжения от кручения одновременно имеют наибольшие значения. Главные напряжения при изгибе с кручением прямого бруса круглого поперечного сечения могут быть найдены по следующим формулам (ось Ох полагаем совпадающей с геометрической осью бруса)  [c.191]

Геометрические характеристики жесткости и прочности для ходовых сечений при кручении прямого бруса  [c.48]

Отметим, что приведенный здесь вывод момента сопротивления кручению Wk и геометрического фактора жесткости составного сечения по существу является решением статически неопределимой задачи совместного кручения простых брусьев, составляющих брус сложного сечения. В этом решении соотношение (6.5.3) по существу является уравнением равновесия, а равенства (6.5.5) представляют собой уравнения совместности деформаций. Такая постановка не учитывает взаимодействия составляющих простых брусьев вдоль образующих, по которым опи соединены. Поэтому формулы (6.5.8), (6.5.10) дают несколько заниженную величину для геометрического фактора жесткости Jk и завышенную — для момента сопротивления Wk-  [c.142]

Б. Сен-Венан на основе подхода теории упругости рассмотрел кручение брусьев некруглого сечения и дал метод определения для них моментов сопротивления и геометрических факторов жесткости (1853).  [c.149]

Осевой момент инерции является основной геометрической характеристикой при расчетах на изгиб. Полярный момент инерции используется при расчетах на кручение бруса круглого поперечного сечения. Статический момент и центробежный момент инерции сечения при расчетах на прочность и жесткость имеют вспомогательное значение.  [c.150]

Величину равную отношению полярного момента инерции сечения к его радиусу, называют полярным моментом сопротивления сечения. Его размерность — длина в кубе. Очевидно, полярный момент сопротивления является геометрической характеристикой прочности бруса круглого поперечного сечения при кручении.  [c.157]


В таблицах на стр. 137 — 145 приведены формулы для определения момента сопротивления при кручении № к, геометрическая характеристика жесткости сечения при кручении У и указаны точки сечения, в которых касательные напряжения достигают наибольшей величины. В начале таблицы на стр. 139 приведены основные расчетные формулы формула для определения наибольших касательных напряжений и формула для определения угла закручивания ф бруса на длине /.  [c.134]

Внешние нагрузки, прилагаемые к телу, вызывают изменения его геометрической формы, связанные с перемеш,ениями точек, линий и плоскостей. Перемещения вдоль прямой линии называются линейными. Перемещения, связанные с поворотом линий и плоскостей (сечений), называются угловыми. На фиг. 1 сплошными линиями показаны три бруса в деформированном состоянии под действием различного рода нагрузок, приложенных к концевым сечениям. Здесь линейное перемещение Д/ получилось при растяжении (фиг. 1, а), а угловое ср — при кручении (фиг. 1, б). При изгибе (фиг. 1, в) концевое сечение одновременно совершило два перемещения линейное — прогиб / и угловое — поворот на угол 0.  [c.10]

Настоящее пособие состоит из четырех разделов. В его первом разделе рассматриваются методы расчетов прямолинейных стержней и стержневых систем, элементы которых работают на растяжение - сжатие. Вычислению геометрических характеристик плоских фигур посвящен второй раздел пособия. Методы решения типовых задач на кручение брусьев круглого и некруглого сечений разбираются в третьем разделе, там же дается понятие о расчете тонкостенных брусьев на кручение. Примеры расчетов балок на прочность и определение их деформаций, а так же метод построения эпюр внутренних усилий в плоских рамах рассматриваются в четвертом разделе пособия.  [c.4]

Решение. Для заданного бруса параметр h/Ъ-Ъ. Из табл. 3.1 выписываем при /г/ =3 значения коэффициентов а,Р,у а = 0,267 Р = 0,263 у = 0,750 и вычисляем геометрические характеристики прямоугольного сечения при кручении  [c.107]

Рассмотренные в предыдущих главах расчеты на растяжение (сжатие) и кручение позволяют сделать вывод, что площадь поперечного сечения бруса является геометрической характерн-стнкой его прочности н жесткости лишь при равномерном рас-  [c.139]

Величину иногда называют моментом еопротивлепия при кручении, а У, — геометрической характериетикой крутильной жееткоети. Следует иметь в виду, что эти величины лишь по размерности и значению в расчетных формулах аналогичны и Jp для круглого сечения бруса.  [c.190]

При разработке основ выбора геометрических элементов орнамента авторами принято, что размеры геометрических элементов поверхности существенно малы по сравнению с конструктивными размерами детали. Известно, что общая деформация литых деталей включает упругую и остаточную деформацию. Упругая деформация обусловлена перемещением и искажением (депланацией) сечения элемента в процессе обработки детали. При прочих равных условиях с увеличением толщины и площади сечения стенки доля упругой деформации, в том числе депланацин, уменьшается. Поэтому в толстостенных литых деталях этот вид деформации практически не учитывается. Однако при уменьшении толщины и площади сечения стенки и увеличении количества сочленений различных геометрических элементов доля упругой деформации, в особенности депланации, резко возрастает. Метод литья в отличие от других методов получения заготовок имеет значительное преимущество— возможность варьировать процессом кристаллизации и получать на поверхности рациональные геометрические элементы, создавая наиболее благоприятное сочетание свойств материалов и геометрических особенностей отливок. При уменьшении поперечного сечения бруса или пластины уменьшается его статический момент, а с ним и жесткость конструкции при изгибе и кручении. Поэтому геометрические элементы в виде тонких стержней с гладкой поверхностью рационально применять для литых деталей, работающих в условиях растягивающих и сжимающих напряжений. Геометрический элемент в виде тонкостенного бруса открытого профиля, обладающего малой жесткостью при кручеиии, целесообразно применять для литых деталей, воспринимающих нагружение изгибом, растяжением и сжатием. Геометрические элементы могут иметь и более сложную конфигурацию, обусловливающую анизотропию свойств в различных направлениях.  [c.19]

Точное решение задачи о кручении брусьев более сложного поперечного сечения методами теории упругости требует значительной вычислительной работы. Однако Л. Пранд-тлем было отмечено совпадение математических формулировок задач о кручении бруса и о деформации под равномерным давлением мембраны, натянутой на плоский контур, одинаковый по форме с контуром поперечного сечения бруса. Не вдаваясь здесь в подробности математической формулировки этих задач, отметим только, что согласно этой аналогии, которая названа мембранной (пленочной) аналогией, касательные напряжения в брусе пропорциональны углам наклона касательных к поверхности мембраны, а крутящий момент пропорционален объему между поверхностью мембраны и плоскостью контура, на который она натянута. Последнее обстоятельство позволяет сравнивать жесткости сечений различных форм. Они, учитывая формулу (6.4.6), будут соотноситься как эти объемы для аналогичных мембран. Таким образом, сравнивая объемы при деформации мембраны на сложном контуре V и круглом контуре Vo (разумеется, при одинаковых усилиях натяжения мембраны и равных величинах давлений), мы можем найти геометрический фактор жесткости сложного сечения  [c.139]


Для расчета напряжений и деформаций при растяжении сжатии нам понадобилась единственная геометрическая характеристика сечения — его нлогцадь. При кручении мы уже сталкивались с более сложными характеристиками, такими как полярный момент инерции Jp и геометрический фактор жесткости Jk- Для изучения наиболее сложного из элементарных напряженных состояний бруса — изгиба — необходимо знать уже целый комплекс взаимосвязанных геометрических характеристик сечений. Этим вопросам и посвящена настоящая глава.  [c.163]

Произведение 0/ , условно называют жесткостью сечения круглого бруса при кручении. Модуль сдвига характеризует жесткость материала, а полярный момент инерции являежя геометрической характеристикой жесткости бруса.  [c.158]

Таким образом, введена новая геометрическая характеристика поперечного сечения Wпредставляющая собой отношение момента инерции относительно данной оси к половине высоты сечения. Эту геометрическую характеристику называют осевым моментом сопротивления или моментом сопротивления при изгибе. Ее часто называют просто моментом сопротивления, в отличие от подобной геометрической характеристики, встречавшейся при рассмотрении кручения бруса круглого поперечного сечения и называемой полярным моментом сопротивления. Очевидно, момент сопротивления имеет размерность длины в кубе (измеряется в ж , см , мл ).  [c.253]


Смотреть страницы где упоминается термин Сечения брусьев — Геометрические кручении : [c.234]    [c.290]    [c.166]    [c.59]    [c.18]    [c.384]    [c.112]    [c.58]    [c.171]    [c.183]    [c.384]   
Сопротивление материалов (1958) -- [ c.77 , c.88 ]



ПОИСК



101, геометрическая при кручении

Брус Кручение

Геометрическое сечение

Ось бруса

Сечения брусьев — Геометрические



© 2025 Mash-xxl.info Реклама на сайте