Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Излучение тепловое — Физические основ

Физические основы теплового излучения  [c.117]

С этой целью в первой части настоящей книги изложены физические основы теплового излучения. Рассмотрены природа электромагнитной энергии, процессы испускания и взаимодействия излучения и вещества. Дано понятие ноля излучения и основных характеризующих его величин, необходимых при рассмотрении процессов радиационного теплообмена. Затем изложены законы термодинамически равновесного излучения, позволяющие связать процессы теплового излучения с температурой и радиационными параметрами вещества.  [c.9]


Физические основы теплового излучения. Лучистый теплообмен имеет чрезвычайно большое значение для работы высокотемпературных печей, где большая часть тепла передается излучением.  [c.79]

ОСНОВНЫЕ ПОНЯТИЯ И ФИЗИЧЕСКИЕ ОСНОВЫ ТЕПЛОВОГО ИЗЛУЧЕНИЯ 100. Тепловое, или температурное, излучение  [c.379]

Цель данной книги — изложение основных принципов термометрии в интервале от 0,5 до приблизительно 3000 К. В течение последних 25 лет по этому вопросу накоплен весьма богатый опыт, и настало время объединить полученные результаты и обсудить достигнутые успехи. Большая часть работ последних лет относилась к низкотемпературной термометрии ниже приблизительно 30 К и их результаты послужили основой Предварительной температурной шкалы 1976 г. от 0,5 до 30 К. Таким образом, температура 0,5 К оказалась удобной нижней границей интервала температур, обсуждаемого в книге. Верхняя граница не обладает такой же определенностью, поскольку термометрия по излучению, рассматриваемая в гл. 7, может быть в принципе распространена на сколь угодно высокие температуры и достаточно лишь теплового равновесия в системе, температура которой измеряется. При всем разнообразии условий в термометрии, охватывающей интервал от температур жидкого гелия до точки плавления платины, общими являются требования теплового равновесия и теплового контакта с термометром. Эти требования неизменно присутствуют при всех термометрических работах и всех температурах на протяжении данной книги. Ясное понимание физических основ каждого из различных методов термометрии представляется обязательным для детального обсуждения их принципов, точности, интервала применения и ограничений. По этой причине каждой из основных глав предпослано краткое изложение физических основ метода в той мере, в какой это требуется для теории и практики термометрии.  [c.9]

Книга состоит из двух частей первая посвящена технической термодинамике, вторая—теплопередаче. В первой части рассматриваются основные понятия, первое и второе начала термодинамики, термодинамические процессы идеальных и реальных газов, циклы двигателей внутреннего сгорания, паротурбинных установок и компрессоров, процессы истечения газов. Во второй части освещены вопросы переноса теплоты теплопроводностью, конвекцией и излучением, метод подобия и основы теплового расчета теплообменников. При изложении материала авторы старались обращать особое внимание на физическую сущность изучаемых явлений, формировать у учащихся научное понимание основ теплотехники и прививать им практические навыки в решении задач прикладного характера. При этом авторы исходили из того, что изучение теоретических основ теплотехники должно предшествовать изучению специальных курсов, посвященных парогенераторам, паротурбинным установкам, автоматизации тепловых процессов, эксплуатации теплоэнергетических установок.  [c.3]


Такой принципиальной особенностью в процессе переноса теплоты излучением по сравнению с процессом теплопроводности является существование теплового электромагнитного поля. Мы, таким образом, сталкиваемся с новой задачей феноменологического подхода — задачей описания электромагнитного поля. Основой такого описания являются уравнения Максвелла, записанные для различных физических сред. Следует заметить, что система уравнений Максвелла, описывающая законы поведения электромагнитного поля в пространстве заполненным веществом, является неполной (с математической точки зрения) системой. Эту систему уравнений необходимо дополнить некоторыми соотношениями, учитывающими конкретные свойства среды, условия на излучающих и поглощающих телах ИТ. п., естественно, не следующими из основной системы. Ситуация несколько напоминает положение при описании процесса теплопроводности.  [c.5]

В основе физических механизмов поражающего действия рентгеновского излучения на объекты лежит передача его энергии электронам атомов конструкционных материалов и ее переход в энергию электромагнитных полей, а затем - в тепловую и механическую энергию.  [c.276]

В зависимости от физических явлений, положенных в основу принципа действия, и особенностей конструктивного исполнения все приемники оптического излучения делятся па три группы фотоэлектрические, фотоэлектронные и тепловые.  [c.5]

Вместе с тем, все новые и новые практические задачи поиска, разведки и добычи нефти и газа в сложных геологических условиях, требуют использования новых специальных методологических подходов, применения новых физических принципов и соответствующего математического аппарата и создания на их основе новых систем наблюдения физических полей, новых принципов обработки информации и нового программного обеспечения. К числу недостаточно изученных геофизических эффектов взаимодействия упругих волн с геологическими средами отнесем разнообразные перекрестные эффекты - эффекты преобразования энергии акустического поля в энергию электромагнитных излучений, гидродинамическую энергию, тепловую энергию. Недостаточно изучены эффекты переизлучения упругих волн (из низкочастотных в высокочастотную область) на разнообразных неоднородностях (границах, ансамблях трещин, каверн, включений и т.п.). В ближайшие годы, по-видимому, внимание исследователей привлекут эффекты автоколебаний, возникающих в пластах, насыщенных углеводородными флюидами и водой.  [c.3]

Физической основой нейтронной радиографии является зависимость сечения взаимодействия излучения с веществом от характеристик вещества и прежде всего от его атомного номера и массового числа. В отличие, например, от рентгеновского и v-излучений эта зависимость для нейтронов (преимущественно низких энергий) выражена более сильно и имеет до некоторой степени противоположный характер (рис. 40). В связи с тем что эффективные сечения взаимодействия а нейтронов с ядрами веществ увеличиваются с понижением энергии нейтронов (рис. 41), в радиационной дефектоскопии нащли преимущественное использование тепловые и надтепловые нейтроны. Из анализа кривых следует, что нейтроны вполне целесообразно использовать при дефектоскопии таких веществ, как марганец, бор, кадмий, водород и др. В этих веществах наблюдается резкое изменение а в зс-висимости от энергии, что позволяет хорошо выявлять дефекты.  [c.338]

Ученый обнаружил, что тепловая радиация может быть определена по изменению электрического сопротивления элемента из прессованного угля, соединенного с приемной площадкой, на которой фокусируется тепловое излучение. Эдисон использовал тазиметр совместно с зеркальным гальванометром Томсона для определения температуры нагретых тел на расстоянии. Эдисон считал свой приемник излучения более чувствительным, чем термостолбик М. Меллони, и рекомендовал его мореплавателям для распознавания приближения ледяных гор, раньше чем они станут видимы невооруженным глазом. Однако для перехода к более широкому практическому использованию инфракрасного излучения и созданию новых оптико-электронных систем необходимо было заложить научный фундамент — физические основы оптико-электронного приборостроения.  [c.377]


Выше были кратко изложены физические основы теплового излучения и рассмотрены процессы взаимодействия излучения и вещества. Имея детальные физические представления об этих первичных процессах и располагая их математическим описанием, можно провести анализ теплоо бмена излучением, который и представляет собой одновременное протекание упомянутых первичных (или основных) процессов. Настоящая  [c.90]

Ряд терминов, включенных в словарь, получили несколько иную трактовку, чем принято обычно. Например, термин термометрия трактуется только как область температурных измерений контактными методами, а не как синоним термина температурные, измерения , при этом термин, тирометрия относится только к области температурных измерений бесконтактными методами по тепловому излучению. Такая трактовка имеет ряд достоинств термин, ,температурные измерения становится в ряд таких Терминов как электрические измерения , магнитные измерения и т. п.. являясь общим для той области измерительной техники, которая занимается методами и средствами измерения температуры, а термины термометрия и пирометрия относятся к ее двум разделам, принципиально отличающимся по своей физической основе. С таким делением хорошо коррели-руются термины, ,термометр и, ,пирометр , относящиеся к приборам соответст венно для измерения температуры контактным методом, требующим равенства температуры чувствительного элемента прибора и температуры объекта измерения, и бесконтактным методом, когда этого не требуется.  [c.3]

Тепловые СТЗ. Физической основой тепловых СТЗ является эмиссия электромагнитного излучения нагретыми телами. Закономерности теплового излучения описываются законами Стефана — Больцмана и Планка, коюрые сиигьс1с1еснни иил-  [c.99]

ТЕПЛОЕМКОСТЬ (решеточная — теплоемкость, связанная с поглощением теплоты кристаллической решеткой удельная— тепловая характеристика вещества, определяемая отношением теплоемкости тела к его массе электронная — теплоемкость металлов, связанная с поглощением теплоты электронным газом) ТЕПЛООБМЕН (излучением осущесгв-ляется телами вследствие испускания и поглощения ими электромагнитного излучения конвективный происходит в жидкостях, газах или сыпучих средах путем переноса теплоты потоками вещества и его теплопроводности теплопровод-ноетью проходит путем направленного переноса теплоты от более нагретых частей тела к менее нагретым, приводящего к выравниванию их температуры) ТЕПЛОПРОВОДНОСТЬ (решеточная осуществляется кристаллической решеткой стационарная характеризуется неизменностью температуры различных частей тела во времени электронная — теплопроводность металлов, осуществляемая электронами проводимости) ТЕПЛОТА (иенарения поглощается жидкостью в процессе ее испарения при данной температуре конденсации выделяется насыщенным паром при его конденсации образования — тепловой эффект химического соединения из простых веществ в их стандартных состояниях плавления поглощается твердым телом в процессе его плавления при данной температуре сгорания — отношение теплоты, выделяющейся при сгорании топлива, к объему или массе сгоревшего топлива удельная — отношение теплоты фазового перехода к массе вещества фазового перехода — теплота, поглощаемая или выделяемая при фазовом переходе первого рода) ТЕРМОДЕСОРБЦИЯ — удаление путем нагревания тела атомов и молекул, адсорбированных поверхностью тела ТЕРМОДИНАМИКА — раздел физики, изучающий свойства макроскопических физических систем на основе анализа превращений без обращения к атомно-молекулярному строению вещества  [c.286]

Фундаментальная константа Н — постоянная Планка, играющая выдающуюся роль в современной физике, — может быть определена экспериментально не только с помощью законов излучения черного тела, но и другими, более прямыми и точными методами. Некоторые из них рассмотрены ниже. Значения Й, полученные на основе разных физических явлений (тепловое излучение, фотоэффект, коротковолновая граница сплошного рентггеновского спектра, эффект Джозефсона в сверхпроводимости и др.), хорошо согласуются друг с другом.  [c.432]

Время на отдых и личные надобности (регламентированные перерывы) з рупненно определяют в процентах от /опер, причем время на личные надобности предусматривается нормативами в размере 20 % от /опер или 10 мин на рабочую смену (табл. 17.3). В основу нормирования времени на отдых должна быть положена разработанная НИИ труда методика, согласно которой на работоспособность влияют следующие факторы физические усилия, нервное напряжение, темп работы, рабочее положение, монотонность работы, температура, влажность, тепловое излучение в рабочей зоне, загрязненность воздуха, производственный шум, вибрация, толчки, освещение. По каждому из перечисленных и других факторов установлено время на отдых в процентах от /опер -  [c.385]

По мере поднятия над земной поверхностью содержание пыли и других посторонних частиц в воздухе уменьшается. Казалось бы, что при этом насыщенность рассеянного света синими лучами должна также уменьшаться. Однако наблюдения в высокогорных обсерваториях показали, что дело обстоит как раз наоборот. Чем чище воздух, чем меньше в нем содержится посторонних частиц, тем насыщеннее излучение неба синими лучами и тем полнее его поляризация. На этом основании Рэлей пришел к заключению, подтвержденному всеми последующими экспериментальными и теоретическими исследованиями, что здесь рассеяние вызывается не посторонними частицами, а самими молекулами воздуха. Такое рассеяние света называется рэлеевским или молекулярным рассеянием. Однако физическая природа молекулярного рассеяния была понята только в 1908 г. М. Смолуховским (1872—1917). Молекулярное рассеяние вызывается тепловыми флуктуациями показателя преломления, которые и делают среду оптически мутной. Теория рассеяния света в жидкостях и газах, построенная на этой основе, была создана в 1910 г. Эйнштейном. Она применима в тех случаях, когда длина световой волны настолько велика, что среду можно разбить на объемчики, малые по сравнению с кубом длины волны, каждый из которых содержит, однако, еще очень много молекул. К таким объемчикам еще можно применять макроскопические уравнения Максвелла, не учитывая явно молекулярную структуру  [c.602]


Тем из нас, кто вырос уже после создания квантовой механики,, трудно полностью представить себе всю важность этой проблемы. Интересно отметить, что одно из важнейших открытий, а именно открытие постоянной к, Макс Планк сделал при изучении макроскопического явления — теплового излучения, а не при рассмотрении атомных явлений, которые в то время уже были известны. В некотором смысле это мончно понять. Статистическая механика неизбежно долн<на была столкнуться со значительными трудностями, что связано, как мы теперь очень хорошо знаем, с использованием классической механики. Классическая статистическая механика должна была привести к серьезным противоречиям с физической реальностью, так как она пыталась описывать явления на основе атомной теории без достаточно точного представления о ней. Но судьба классической механики была предрешена — ее свергла квантовая теория. Читателям мы рекомендуем обратиться к книгам Планка [8, 9].  [c.142]

Немецкий ученый М. Плаик в 1900 г. теоретически нашел закон распределения интенсивности теплового излучения по длинам волн при различных температурах, а Р. 3. Ленц провел в 1869 г. экспериментальные исследования, подтвердившие связь между коэффициентами теплопроводности и электропроводности металлов. Теория теплообмена строилась на так называемой феноменологической основе, заключающейся в рассмотрении отдельных явлений как некоторых изолированных закономерностей, которые могут быть описаны математически без раскрытия физической сущности этих явлений. Примером такого феноменологического рассмотрения явлений теплообмена может служить формальная математическая теория теплопроводности, созданная Фурье и развитая Пуассоном. Позже удалось глубже выявить физическую сущность процесса теплообмена. Одновременно с этим была разработана общая методология исследования, обработки и обобщения опытных данных, основанная на теории подобия.  [c.8]

БОЛЬЦМАНА ПОСТОЯННАЯ, одна из фундаментальных физических констант равна отношению газовой постоянной R к Авогадро постоянной Na, обозначается к названа в честь австр. физика Л. Больцмана (L. Boltzmann). Б. п. входит в ряд важнейших соотношений физики в ур-ние состояния идеального газа, в выражение для ср. энергии теплового движения ч-ц, связывает энтропию физ. системы с её термодинамической вероятностью. Б.п. k=i, 380662(44). 10-23 Дж/К (на 1980). Это значение получено на основе данных о R и Л д. Непосредственно значение Б. п. можно определить, напр., из опытной проверки законов теплового излучения.  [c.56]


Смотреть страницы где упоминается термин Излучение тепловое — Физические основ : [c.133]    [c.79]    [c.285]    [c.684]   
Приборы для неразрушающего контроля материалов и изделий том 1 (1986) -- [ c.117 , c.118 , c.119 , c.120 ]



ПОИСК



49 Физические основы

Лучистый теплообмен Основпые понятия и физические основы теплового излучения

Тепловое излучение

ФИЗИЧЕСКИЕ ОСНОВЫ ИЗЛУЧЕНИЯ Основные понятия теории теплового излучения



© 2025 Mash-xxl.info Реклама на сайте