Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение вязкого газа дозвуковое

Уравнения движения вязкого газа описывают течения с существенно различными физическими и математическими свойствами. При численном моделировании область интегрирования следует разбивать таким образом, чтобы учесть характер решения в каждой области. Например, для задач внешнего обтекания можно ввести такие, подобласти течение вблизи затупления, вблизи отошедшей ударной волны, зона разворота потока, пограничного слоя, возникновения местных дозвуковых зон, область взаимодействия пограничного слоя и ударной волны, области резкого изменения кривизны профиля обтекаемого тела, зоны взаимодействия и поглощения энтропийного слоя и т. п.  [c.121]


В учебном пособии рассмотрены основные вопросы совре менной гидромеханики статика, кинематика и динамика. Приведены выводы общих уравнений движения сплошных сред. Даны законы переноса импульса, тепла и вещества. Изложена теория потенциального днижения как для плоских, так и для пространственных потоков. Рассмотрена сжимаемость газа при дозвуковых и сверхзвуковых течениях. Освещены вопросы теории движения вязкой жидкости, подробно рассмотрены ламинарное и турбулентное движения в трубах и в пограничном слое. Дан метод расчета трубопроводов.  [c.2]

Итак, рассматриваемое нетривиальное решение системы (34) представляет не что иное, как переход от сверхзвукового движения к дозвуковому в однородном потоке вязкого газа. Нетрудно убедиться в том, что не только числа М, но и температуры, плотности и давления на бесконечности вверх и вниз по течению связаны между собой теми же соотношениями, что и в теории прямого  [c.645]

С точки зрения изложенной только что теории становится ясной причина указанного еще в гл. IV возрастания в скачке уплотнения энтропии. Прирост энтропии служит указанием на наличие в области перехода сверхзвукового потока в дозвуковой потерь механической энергии, превращающейся за счет внутреннего трения в тепло. Общая формула диссипируемой в тепло энергии при движении вязкого сжимаемого газа будет выведена в следующем параграфе.  [c.515]

Итак, рассматриваемое пе тривиальное решение системы (49) представляет не что иное как переход от сверхзвукового движения к дозвуковому в прямолинейном одномерном, потоке вязкого сжимаемого газа. Нетрудно убедиться в том, что не только числа М, но и температуры, плотности и давления на бесконечности вверх п вниз по течению связаны между собою теми же соотношениями, что в теории прямого скачка уплотнения, изложенной в гл. IV для газа без внутреннего трения. Разница здесь в том, что в идеальном газе скачок уплотнения представлял некоторую нормальную к линиям тока поверхность разрыва элементов движущегося газа, причем само явление скачка приходилось рассматривать как предельное образование.  [c.513]

В механике жидкостей и газов наблюдается сходный процесс. Необходимость учета сжимаемости среды при движениях с большими дозвуковыми, затем околозвуковыми и сверхзвуковыми скоростями, когда термодинамика процесса играет первостепенную роль, заставляет все больше усилий уделять газовой динампке — дисциплине, в начале века составляющей небольшую главу механики, а теперь соперничающей по объему материала и размаху исследований с классической аэродинамикой. Изучаются движения в газообразной среде и с так называемыми ги-перзвуковыми скоростями — скоростями космических кораблей и метеоров, когда надо принимать во внимание и диссоциацию молекул газа. В гидромеханике схема идеальной жидкости в двумерных стационарных задачах при современных возможностях математического аппарата представляется почти исчерпанной. Больше внимания привлекают пестациопарные задачи плоского движения идеальной жидкости и трехмерные задачи и особенно механика вязкой (несжимаемой) жидкости. Статистические методы остаются основными в теории турбулентности, где еще предстоит решить ряд кардинальных проблем. Очень большое место занимают теперь такие разделы, как движение жидкости и газа в пористых средах, теория взрывных процессов на основе гидродинамической схемы, теплопередача при движении жидкостей и газов.  [c.301]


Работа посвящена исследованию сверх- и гиперзвуковых двумерных течений вязкого газа в каналах в присутствии нормального к плоскости течения магнитного поля в режиме МГД-генератора. Ранее такие исследования проводились только в случае дозвукового или умеренного сверхзвукового режимов движения проводящей среды. Первые исследования были выполнены в одномерной постановке (см. [1]), затем с использованием двумерных уравнений Эйлера [1, 2], и только в последнее время стали учитываться эффекты вязкости в рамках уравнений Павье-Стокса [3, 4]. Однако ряд новых технических приложений потребовал существенного распЕирения диапазона чисел Маха, что в свою очередь вызвало необходимость учета эффектов вязко-невязкого взаимодействия и возникающих при торможении магнитным полем необратимых газодинамических потерь. В [5] получены новые результаты по торможению сверхзвукового потока осесимметричным магнитным полем в круглой трубе. Они обобщили данные невязкого исследования [2] на случай ламинарного и турбулентного течения.  [c.575]

Интегрирование уравнений динамики вязкого газа представляет значительные математические трудности. Простейшим примером такого интегрирования является решение одномерной задачи о переходе безграничного сверхзвукового потока в дозвуковой. Этот переходный процесс протекает в тонкой, но конечной по величине области, которая должна при более глубоком рассмотрении явления заменить принятую в динамике идеального газа упрощенную схему прямого скачка уплотнения или ударной волны, представляющих плоскости разрыва динамических и термодинамических характеристик потока. Как сейчас будет показано, размеры этой переходной области очень малы и, во всяком случае, сравнимы с длиной свободного пробега молекулы. Естественно, возникает вопрос о допустимости применения в областях столь малого размера уравнений динамики сплошной среды, вообще, и выведенных в предыдущем параграфе уравнений, в частности, так как само представление о газе как о некбторой сплошной среде справедливо лишь при движениях в области, размеры которой велики по сравнению с длиной свободного пути пробега молекулы. Имея в виду это существенное возражение ), разберем все же решение поставленной задачи с точки зрения классических уравнений динамики вязкого газа. В оправдание приведем следующие два соображения 1) это решение показывает, что переходная область имеет порядок длины свободного пути пробега молекулы и 2) служит простой и хорошей иллюстрацией применения уравнений динамики вязкого газа ).  [c.810]

Итак, рассматриваемое нетривиальное решение системы (34) представляет не что иное, как переход от сверхзвукового движения к дозвуковому в однородном потоке вязкого газа. Нетрудно убедиться в том, что не только числа М, но и температуры, плотности и давления на бесконечности вверх и вниз по течению связаны между собой теми же соотношениями, что и в теории прямого скачка уплотнения, изложенной для газа без внутреннего трения. Разница здесь в том, что в идеальном газе скачок уплотнения представлял некоторую нормальную к линиям тока поверхность разрыва элементов движущегося газа, причем само явление скачка приходилось рассматривать как предельное образование, не допускающее описания при помощи непрерывных решений уравнений движения. В вязком газе, наоборот, явление перехода сверхзвукового потока в дозвуковой описывается непрерывным реилением уравнений движения, а именно интегралом дифференциального уравнения (37) в области движения (—оо<д <оо). Покажем, что эта область перехода сверхзвукового потока в дозвуковой имеет очень малую протяженность, зависящую от параметров потока и в первую очередь от Мь Вернемся к уравнению (37) и, пользуясь имеющимся произволом в выборе начала отсчета абсцисс х, поместим начало координат в ту точку, где скорость и равна критической скорости а, соответствующей параметрам потока вверх по течению. Тогда, вводя еще для краткости дополнительное обозначение  [c.814]



Смотреть страницы где упоминается термин Движение вязкого газа дозвуковое : [c.646]    [c.514]    [c.102]    [c.31]   
Механика жидкости и газа Издание3 (1970) -- [ c.613 ]



ПОИСК



Движение газа дозвуковое

Движение газов

О газе в движении



© 2025 Mash-xxl.info Реклама на сайте