Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сварка генераторы

Сварочный генератор преобразует механическую энергию вращения якоря в электрическую энергию постоянного тока, необходимую для сварки. Генератор поставляется потребителю отдельно или в комплекте с приводным двигателем. Преобразователи, представляющие собой комбинацию асинхронного трехфазного двигателя переменного тока и сварочного генератора постоянного тока, используются для ручной дуговой и механизированной сварки в углекислом газе в основном в цеховых условиях. Агрегаты, состоящие из двигателя внутреннего сгорания и сварочного генератора, применяют главным образом при ручной сварке в полевых условиях, на монтаже и при ремонте, когда отсутствует электрическая сеть питания.  [c.136]


В промышленности, строительстве, на транспорте и в других отраслях народного хозяйства применяют генераторы низкого до 0,01 МН/м (МПа) и среднего давления до 0,15 МН/м (МПа). Генераторы среднего давления более удобны, так как облегчают регулирование состава и пламени и обеспечивают более постоянные условия сварки. Генераторы высокого давления в промышленности не применяют.  [c.327]

В промышленности применяют генераторы низкого давления (до 0,01 Мн/м ) и среднего (до 0,15 Мн/м-). Генераторы среднего давления более удобные, так как. облегчают регулирование состава пламени и обеспечивают постоянные условия сварки. Генераторы высокого давления (выше 0,15 Мн/.ч ) в промышленности не применяют.  [c.287]

Толщина стенки трубы мм Радиочастотная сварка. Генератор мощностью, кет Сварка сопротивлением с частотой тока 150 гц  [c.309]

Ремонтную сварку генератора, бывшего в работе, можно производить только на открытом воздухе и только после очистки генератора от остатков ацетилена и карбидного ила указанным выше способом.  [c.440]

Рис. 89. Схемы конструкций квантовых генераторов, используемых при сварке Рис. 89. <a href="/info/72461">Схемы конструкций</a> <a href="/info/35638">квантовых генераторов</a>, используемых при сварке
Типовые установки для лазерной сварки, кроме квантового генератора и источника силового питания, содер кат еще замкнутую систему охлаждения, оптическую систему фокусировки лазерного луча на детали, оптическую систему наблюдения за процессом, координатный сварочный стол, при необходимости систему освещения свариваемого изделия и систему нодачи инертного газа в зону сварки для защиты нагреваемого металла от окисления.  [c.168]

Для питания сварочной дуги применяют источники переменного тока (сварочные трансформаторы) и источники постоянного тока (сварочные выпрямители и генераторы). Источники переменного тока более распространены, так как обладают рядом технико-экономических преимуществ. Сварочные трансформаторы проще в эксплуатации, значительно долговечнее и обладают более высоким КПД, чем выпрямители и генераторы постоянного тока. Однако в некоторых случаях (сварка на малых токах покрытыми электродами и под флюсом) при питании переменным током дуга горит неустойчиво, так как через каждые 0,01 с напряжение и ток дуги проходят через нулевые значения, что приводит к временной деионизации дугового промежутка. Постоянный ток предпочтителен в технологическом отношении при его применении повышается устойчивость горения дуги, улучшаются условия сварки в различных пространственных положениях, появляется возможность вести сварку на прямой и обратной полярностях и т. д. Последнее вследствие большего тепловыделения в анодной области дуги позволяет проводить сварку сварочными материалами с тугоплавкими покрытиями и флюсами  [c.188]


Сварочные агрегаты состоят из двигателя внутреннего сгорания и сварочного генератора постоянного тока. Агрегаты монтируют на подвижных платформах и используют в монтажных и полевых условиях для ручной сварки.  [c.190]

Ультразвуковую сварку (частота колебаний 20 — 30 кГц) применяют для соединения цветных металлов и пластиков. Детали сжимают вибрирующим зажимом 1, соединенным волноводом 2 с магнито-стрикционным генератором колебаний 3. Высокочастотные колебания вызывают нагрев стыка и диффузионное взаимопроникновение атомов соединяемых материалов.  [c.165]

Местное расплавление соединяемых частей при лазерной сварке осуществляют энергией светового луча, полученного от оптического квантового генератора — лазера.  [c.4]

Лазерный луч. При лазерной сварке для местного расплавления соединяемых частей используют энергию светового луча полученного от оптического квантового генератора-лазера. По виду активного вещества-излучателя лазеры разделяют на твердые, газовые, жидкостные и полупроводниковые, по принципу генерации лазерного луча — импульсные и непрерывные.  [c.16]

Ацетиленовые генераторы для сварки и резки классифицируются по следующим признакам  [c.94]

Питание постов газовой сварки и резки от ацетиленовых генераторов связано, с рядом неудобств, поэтому большое распространение получило питание ацетиленом от ацетиленовых баллонов. Ацетиленовые баллоны заполняют пористой массой (древесный уголь, пемза, инфузорная земля), образующей микрополости, необходимые для безопасного хранения ацетилена. Массу в баллоне пропитывают ацетоном (225—300 г на 1 дм вместимости баллона), в котором хорошо растворяется ацетилен. При нормальных условиях в одном объеме ацетона растворяется 23 объема ацетилена. Давление растворенного ацетилена в наполненном баллоне не должно превышать 1,9 МПа при 20°С. Для уменьшения потерь ацетона из баллона ацетилен необходимо отбирать со скоростью не более 1700 дм /ч.  [c.96]

Существуют четыре вида запасенной для сварки энергии электростатическая или конденсаторная, электромагнитная, инерционная и аккумуляторная. Энергия соответственно накапливается в батарее конденсаторов, магнитном поле специального сварочного трансформатора, вращающихся частях генератора или аккумуляторной батарее.  [c.112]

Параметрами ультразвуковой сварки являются мощность генератора колебаний, давление сварки, амплитуда колебаний и время сварки. Ультразвуковую сварку применяют для получения точечных и шовных соединений металлов и сплавов небольшой толщины (как правило, менее 1 мм) и для сварки пластмасс.  [c.120]

Недостатком ультразвуковой сварки является ограниченность толщин свариваемых деталей (менее 1 мм), большая стоимость генераторов высокой частоты, действие высокой частоты на организм человека.  [c.120]

Анализ типовых структурных схем передачи энергии при разных сварочных процессах (табл. 1.3) позволяет обосновать предлагаемую выше классификацию. Например, при дуговой сварке электрическая энергия ЭЛ из сети проходит следующий путь трансформируется в сварочном трансформаторе или генераторе для получения нужных параметров тока и напряжения  [c.24]

В области индустрии отметим применения лазеров для сварки, обработки и разрезания металлических и диэлектрических материалов и деталей в приборостроении, машиностроении и в текстильной промышленности. Очень интересны и важны применения лазеров в биологии, медицине, геодезии и картографии, в системах локации спутников и во многих других областях. Следует подчеркнуть, что постоянно расширяется сфера применений оптических квантовых генераторов.  [c.771]

Ламповые генераторы являются источниками питания индукционных установок в диапазоне радиочастот. Нормами на индустриальные радиопомехи выделено несколько льготных полос с повышенным допустимым излучением. Средние точки полос 0,066 0,44 0,88 1,76 5,28 13,56 27,12 40,68 и 81,36 МГц. Для индукционного нагрева используются в основном частоты 0,066 и 0,44 МГц. Частоты 0,88—5,28 МГц применяются для специальных высокочастотных процессов (получение индукционной плазмы, сварка тонких изделий, плавка окислов и т. д.). Более высокие частоты используются для нагрева диэлектриков [10, 41].  [c.170]


В ламповых генераторах используются керамические конденсаторы высокого напряжения. Они входят в состав генератора. В установках для высокочастотной сварки и некоторых других процессов конденсаторы могут входить также в состав технологических устройств (например, сварочных головок) [42 .  [c.172]

За одну операцию сваривается участок шва, равный длине электрода. Длина электрода ограничена мощностью генератора и условиями квазистационарности электрического поля (см. 9-1). Для сварки употребляются частоты 27,12 40,68 81,36 152,5 МГц 1101.  [c.291]

Коэффициент трансформации выбирается в зависимости от назначения генератора (поверхностная закалка, сварка) с учетом средних параметров индукторов, которые должны к трансформатору подключаться.  [c.96]

В 1925 г. началось серийное производство масляных выключателей для напряжений 3, 6, 10 и 35 ке на заводе Электроаппарат . На заводе Электрик в 1924 г. было налажено производство сварочных генераторов, трансформаторов и машин для контактной сварки.  [c.93]

Примером генераторов с самовозбуждением могут служить >аторы технологических аппаратов фирмы KLN Ultras hal GVBH ) для ультразвуковой сварки, генераторы аппаратов фирмы son (Великобритания) для УЗ ванн очистки и отечественные заты типа У301-01 [ 2 ].  [c.51]

Технологическое оборудование для сварки когерентным световым лучом квантового генератора (лазера) или лазерной срарки используют в радио- и электронной промышленности. Благодаря острой фокусировке возможно сосредоточение очень большой тепловой энергии на площадках, измеряемых сотыми и тысячными долями миллиметра. Принципиально возможно создание лазера, пригодного для сварки очень толстого металла, но процесс плавления металла становится в этом случае практически неуправляемым. Поэтому в настоящее время лазерную сварку применяют для соединения металла сверхмалых толщин (металлическая фольга), проволок малого диаметра и т. п., т. е. изделий, которые не требуют разделки кромок. Основные типы сварных соединений — нахлесточные и стыковые.  [c.16]

В условиях сварки при коротком замыкании э. д. с. геаератора снижается до минимальных значений, равных падению напряжения в короткозамкнутой сварочной цепи, т. е. Е . = /и з/ г- Поэтому необходидю, чтобы при размыкании сварочной цепи э. д. с. генератора весьма быстро возросла до значений, достаточных для возбуждения дуги, пока металл остается достаточно нагретым после короткого замыкания для существования эмиссии электронов.  [c.127]

В настоящее время сварочные генераторы остаются главным образом в агрегатах для сварки в полевых условиях, где привод осуществляется от двигателя внутреннего сгорания. Во всех остальных областях примопения сварки па постоянном токе они вытесняются сварочными выпр 1мителями.  [c.130]

Процесс сварки происходит при непрерывно горящей маломощной дуге и периодически зажигающейся импульсами мощной дуге. Источник питания представляет собой комплект из двух источников, которые работают одновременно и независимо друг от друга. Такие источники могут быть спроектированы специально (ИПИД-1, ИПИД-300, ИПИД-ЗООМ) или составлены из сварочного генератора или выпрямителя (иапример, ПСГ-500, ИПП-ЗООП, ВС-500 и т п.) и генератора кратковременных импульсов, амплитуда и длительность которых регулируются.  [c.136]

Другим способом бесконтактного возбуждения дуги является применение импульсных генераторов, использующих накопптель-пь(е емкости, которые заряжаются от специального зарядного устройства и в моменты повторного возбуждения дуги разря-жаютс>[ на дуговой промежуток. Так как фаза перехода сварочного тока через нуль во время сварки не остается строго постоянной, то для обеспечения надежной работы генератора необходимо устройство, позволяющее синхронизировать [)азряды емкости с моментами перехода тока дуги чер( 3 ноль.  [c.139]

Наибольшее промышленное применение получила конденсаторная сварка. Энергия в конденсаторах накапливается при их зарядке от источника постоянного тока (генератора или выпрямителя) а затем в процессе пх разрядки преобраг1уется в теплоту, используемую для сварки. Накопленную в конденсаторах энергию можно регулировать изменением емкости и напряжения зарядки  [c.218]

При диффузионной сварке соединение образуется в ре зультате взаимной диффузии атомов в поверхностных слоях контак тирующих материалов, находящихся в твердом состоянии. Температура нагрева при сварке несколько выше или ниже температурь рекристаллизации более легкоплавкового материала. Диффузионную сварку в большинстве случаев выполняют в вакууме, однако она возможна в атмосфере инертных защитных газов. Свариваемые за готовки 3 (рис. 5.45) устанавливают внутри охлаждаемой металлической камеры 2, в которой создается вакуум 133(l(H-f-10" ) Па, и нагревают с помощью вольфрамового или молибденового нагревателя или индуктора ТВЧ 4 (5 — к вакуум1юму насосу 6 — к высокочастотному генератору).Может быть исиользоваитакже и электронный луч, позволяющий нагревать заготовки с eui,e более высокими скоростями, чем при использовании ТЕ Ч. Электронный луч применяют для нагрева тугоплавких металлов и сплавов. После тогй как достигнута требуемая температура, к заготовкам прикладывают с помощью механического /, гидравлического или пневматического устройства небольшое сжимающее давление (1—20 МПа) в течение 5—20 мин. Такая длительная выдержка увеличивает площадь контакта между предварительно очищенными свариваемыми поверхностями заготовок. Время нагрева определяется родом свариваемого металла, размерами и конфигурациями заготовок.  [c.226]

Конструкция волнового зубчатого редуктора, разработанная фирмой USM (США), показана на рис. 10.46. Генератор волн, включаюпл,ий кулачок 7 овальной формы и шарикоподшипник в с гибкими кольцами, посажен на быстроходный вал I на привулканнзированной резиновой прокладке 8. Генератор волн деформирует зубчатый венец 4 гибкого колеса, выполненного в виде цилиндрической оболочки и соединенного сваркой с тихоходным валом 9. Жесткое колесо 5 выполнено заодно с корпусом. Крышка 3 выполнена с радиальными ребрами, которые охлаждаются потоком воздуха от вентилятора 2.  [c.222]


Универсальные высокочастотные индукционные генераторы (ВЧИ) имеют мощность от 10 до 63 кВт при 0,44 МГц и 100, 160 кВт при 0,066 МГц. Выпускаются установки малой мощности для литья микропровода (3 кВт), производства полупроводниковых материалов и для других процессов. Наиболее мощные генераторы (до 1000 кВт) производятся для сварки п получения высокочастотной плазмы.  [c.170]

На радиочастотах используются воздушные трансфюрматоры, имеющие одновитковую вторичную обмотку из медного листа, а внутри нее — много-витковую первичную спираль. Трансфюрматоры просты по конструкции и поставляются сов.честно с генератором. Регулирование тр че предусмотрено (только смена обмотки), КПД зависит от сопротивления и коэффициента мощности нагрузки и при os (pj— 0,05 составляет 75—85%. Основной недостаток воздушных трансформаторов — большая собственная реактивная. мощность. Отношение реактивных мощностей на входе и в нагрузке равно 3—5, что приводит к завышению мощности конденсаторной батареи и к добавочным потеря.м в контурах. В. мощных установках высокочастотной сварки используются трансформаторы с неза.мкнутым магнитопроводом из ферритовых стержней [42]. Трансформаторы с ферритовым магнитопроводом более чувствительны к изменению сопротивления нагрузки и дают наилучший эффект при работе на примерно постоянную нагрузку, что и имеет место в установках непрерывной сварки.  [c.171]

Разработаны установки для сварки труб и профилей на частоты 10, 440 и 1760 кГц. Индукционные сварочные установки типа ИС на мощность 1000, 1500, 2000 и 4000 кВт с частотой 10 кГц предназначены для одно- и двухшовной сварки труб диаметром 203— 1620 мм с толщиной стенки 6—20 мм. Установки укомплектованы машинными генераторами тина ОП)Ч-250-10, работающими параллельно. Индукторы выполнжотся многовитковымн, что исключает необходимость в понижающем трансформаторе. Согласование индуктора с генераторами осуществляется последовательнопараллельным включением конденсаторов. В связи с этим напряжение на индукторе достигает 1000 В при напряжении генераторов 800 В.  [c.216]

В(,[Сокочастотпые сварочные устаповки с ламповыми генераторами ВЧС1-100/1,76 и ВЧС1-160/1.76 с колебательной мощностью 100 и 160 кВт и частотой 1,76 МГц разработаны для сварки тонкостенных труб и оболочек кабелей. Для сварки на частоте 440 кГц выпускаются установки мощностью 160, 250, 400 и 1000 кВт.  [c.216]

Квантовая электроника использует новейшие достижения физики в исследовании квантовых процессов, происходящих внутри атомов и молекул вещества, при которых излучается электромагнитная энергия сверхвысокочастотных колебаний, с длиной волны около одного микрона, т. е. в области инфракрасных колебаний. Создаваемые при этом параллельные световые лучи огромной яркости позволяют сконцентрировать колоссальную энергию в малом объеме. Генераторы и усилители этого типа (лазеры и мазеры) могут быть отличным средством для космической связи и для оптических локаторов. Эти генераторы дают возможность использовать энергию высокой плотности и осуществлять новые впды химических реакций, сварки и плавления тугоплавких веществ и другие высокотемпературные процессы. Разработка новых материалов, обладающих квантово-оптическими свойствами, — одно из основных условий успеха в этой области.  [c.4]

В машиностроении стали применять электрошла-ковую сварку (под слоем электропроводящего шлака), которая позволяет сваривать крупногабаритные части машин, станины и т. п. вместо их отливки. Этот способ электросварки не требует специальной подготовки свариваемого шва. Для такой электросварки применяются несколько электродов. Электрошлаковая сварка позволила охватить такие области, как сварка конструкций доменных и мартеновских печей, корпусов судов из толстых металлических листов, тяжелых станин различных машин, прокатных станов, корпусов гидравлических и тепловых турбин и генераторов и т. д.  [c.35]


Смотреть страницы где упоминается термин Сварка генераторы : [c.65]    [c.70]    [c.130]    [c.136]    [c.165]    [c.104]    [c.214]    [c.218]    [c.399]   
Металловедение и технология металлов (1988) -- [ c.359 , c.391 , c.393 ]



ПОИСК



Аппаратура и оборудование для сварки и резки Ацетиленовые генераторы

Генераторы ацетиленовые для сварки в среде защитных

Генераторы для сварки в среде защитных газов

Генераторы для сварки ручной дуговой

Низковольтные генераторы, применяемые для газоэлектрической сварки

Сварка электрические генераторы

Сварочные генераторы постоянного тока для газоэлектрической сварки плавящимся электродом



© 2025 Mash-xxl.info Реклама на сайте