Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Щелочь защитная

Сухой хлористый водород и газообразный NHs так же не действуют на алюминий. В щелочах защитная пленка на алюминии растворяется, коррозия протекает с водородной деполяризацией.  [c.202]

Фосфатные покрытия представляют собой пленку труднорастворимых в воде фосфорнокислых соединений, образовавшихся в результате взаимодействия металла с фосфорной кислотой и ее кислыми солями. Они устойчивы в обычных атмосферных условиях, нейтральной водной среде и ряде органических продуктов — растворителях, смазочных маслах, но разрушаются под действием кислот и щелочей. Защитная способность их по отношению к стали выше, чем оксидных покрытий, полученных химическим путем, а после пропитки лаками или другими полимерными материалами становится сопоставимой с защитой, достигаемой с помощью гальванических покрытий. Фосфатные пленки являются электроизоляционным материалом, их пробивное напряжение, в зависимости от толщины и условий формирования, достигает 250—500 В, а после пропитки электроизоляционными лаками — до 1000 В. Антикоррозионные и электроизоляционные свойства не ухудшаются до 200 °С.  [c.273]


Коррозия алюминия в щелочных средах может быть значительно снижена также добавлением хромата. Так, 1—5% хромата натрия практически полностью прекращает коррозию алюминия в 0,1 — 1%-ном растворе гидроокиси натрия. Введение в 1-н. гидроокись натрия бихромата калия снижает скорость коррозии дюралюминия в тем большей степени, чем выше концентрация бихромата. В 1-н. щелочи, содержащей бихромат в концентрации 1,8-н., коррозия дюралюминия прекращается поверхность металла покрывается черной пленкой окисла. Бихромат, как и перекись водорода, способствует образованию на поверхности алюминия и его сплавов в щелочи защитной окисной пленки.  [c.95]

Из силицидов используют дисилицид Мо, характеризующийся высокой температурой окисления (1500—1800° С) и химической стойкостью против кислот, щелочей, расплавов солей и металлов. Его применяют в качестве нагревательных стержней сопротивления и защитных покрытий силициды Та — в качестве покрытий по Та, силициды В — по графиту и Мо.  [c.382]

Стеклоэмали, помимо улучшения внешнего вида, эффективно защищают метал-л от коррозии во многих средах. Можно подобрать такой состав эмали, состоящей в основном из щелочных боросиликатов, что она будет устойчива в сильных кислотах, слабых щелочах или в обеих средах. Высокие защитные свойства эмалей обусловлены их практической непроницаемостью для воды и воздуха даже при довольно длительном контакте и стойкостью при обычных и повышенных температурах. Известно о случаях их применения в катодно защищенных емкостях для горячей воды. Наличие пор в покрытиях допустимо при их использовании совместно с катодной защитой, в противном случае покрьггие должно быть сплошным, причем без единого дефекта. Это означает, что эмалированные емкости для пищевых продуктов и химических производств при эксплуатации не должны иметь трещин или других дефектов. Основными недостатками эмалевых покрытий являются чувствительность к механическим воздействиям и растрескивание при термических ударах. (Повреждения иногда поддаются зачеканиванию золотой или танталовой фольгой.)  [c.243]

Железоуглеродистые сплавы устойчивы в щелочных растворах, концентрация которых не превышает 30%. Если концентрация превышает 30%, то защитное действие вторичных продуктов коррозии уменьшается. При повышенных температурах скорость коррозии железоуглеродистых сплавов в щелочах резко возрастает вследствие разрушения защитной пленки. Конструкции из железоуглеродистых сплавов, работающие под нагрузкой в горячих концентрированных растворах щелочей и некоторых солей (например, нитратов), подвержены коррозионному растрескиванию.  [c.12]


Карбиды. Широко применяется карбид кремния - карборунд (Si ). Он имеет высокую жаропрочность (1500... 1600 С), твердость, устойчивость к кислотам и неустойчивость к щелочам. Применяется в качестве нагревательных стержней, защитных покрытий графита. В заряженном состоянии в виде крошки карборунд применяется как абразивный материал.  [c.138]

Нанесение защитных покрытий уменьшает агрессивное влияние коррозионной среды, что способствует повышению устойчивости стали к коррозионному растрескиванию. Никелевые покрытия обеспечивают защиту от коррозионного растрескивания в хлоридах, щелочах и других средах. Весьма высокий защитный эффект во многих средах дают алюминиевые покрытия.  [c.16]

Именно такой эффект должен наблюдаться у нормальных стекол. Его влияние будет сказываться на некотором ослаблении отрицательного действия щелочей в стеклах на защитное действие покрытий из них.  [c.247]

Рис. 1. Влияние щелочей на защитные свойства стекол и покрытий из них, содержащих 8% ВаО. Г=900° С. Рис. 1. Влияние щелочей на <a href="/info/553808">защитные свойства</a> стекол и покрытий из них, содержащих 8% ВаО. Г=900° С.
Необходимо следить за полнотой заливки остановленного котла защитным раствором, а также за наличием необходимой концентрации замедлителя (щелочь, фосфат) во всех,точках аппарата (хорощее перемешивание, полное растворение загруженного реагента), иначе может возникнуть опасная местная коррозия.  [c.75]

Необходимо также контролировать состав воды, на котором готовится защитный раствор. Чем меньше соле-содержание воды, тем меньше щелочи требуется для полной пассивации металла и тем надежнее защита. Поэтому лучше всего готовить раствор на конденсате. Менее желательно применение химически очищенной воды.  [c.75]

Катодный подрыв при повышенных температурах в экстремальных случаях возможен и при эмалевых покрытиях, поскольку стекло в горячих щелочах растворяется. Хотя эмали, стойкие к горячей воде, сравнительно стойки такл е и к щелочам, к грунтовым эмалям это не относится, В подогретых очень соленых водах поры в эмали могут увеличиваться, так что необходимый защитный ток несколько возрастет, Это наблюдалось в некоторых редких случаях, но, насколько известно, не привело к отказу системы защиты.  [c.169]

В [30]. Анодная защита против коррозионного растрескивания под напряжением была впервые использована в технике в установке для электролиза воды, работавшей с раствором КОН. Защитный ток здесь был отведен непосредственно от одной из ячеек соответствующего блока для осуществления электролиза [30]. Еще один пример показан на рис. 20.20. Защитная установка этого аппарата для упаривания щелочи работает с усилением от управляющего дросселя, чтобы можно было подводить большой защитный ток до 300 А при напряжении 5 В [2, 33, 39]. Необходимая плотность защитного тока, действующее напряжение и потенциалы в точках измерения Ei и за первые 140 сут после пуска в эксплуатацию показаны на рис. 20.21. Требуемый защитный ток после входа в область пассивности довольно мал. В отличие от кислот в щелочах не может произойти спонтанной активации после отключения защитного тока.  [c.397]

Поскольку система является метаста-бильно пассивной, защита может осуществляться периодически. При этом защитная установка включается только в случае необходимости, так что при помощи одной установки можно защищать несколько выпарных аппаратов. Применение анодной защиты от коррозионного растрескивания иод напряжением под влиянием едкого натра особенно рекомендуется в тех случаях, когда отжиг для снятия внутренних напряжений практически невозможен вследствие больших размеров или геометрических особенностей. Крупнейшими до настоящего времени объектами защиты, по-видимому, являются резервуары со щелочью вмести-  [c.397]

В щелочных растворах углеродистые стали коррозионно устойчивы. Защитный слой образован нерастворимыми гидроксидами, которые растворяются только при высокой концентрации щелочей (до 50%). Из практики известна щелочная хрупкость сталей, которая проявляется именно при таких высоких концентрациях щелочи и повышенной температуре. Коррозионные трещины обнаруживаются прежде всего в местах завальцовки труб, в заклепочных соединениях и т. д.  [c.29]


Железо, высокоуглеродистые и низколегированные стали устойчивы в разбавленных растворах щелочей. Аэрация, повышенная температура, высокие концентрации и присутствие хлоридов способствуют увеличению скорости коррозии. Значительно разъедают сталь кипящие растворы гидроокиси натрия при концентрации выше 10%. В 30%-ном растворе гидроокиси натрия процесс замедляется (20 г/м -24 ч) вследствие образования защитной пленки. Скорость коррозии можно "уменьшить путем предварительной окислительной обработки водяным паром при температуре 550°С. В расплавленной гидроокиси натрия коррозия железа идет с высокой скоростью, равномерно возрастающей с повышением температуры от 350 до 600°С. Выше этой температуры наблюдается интенсивное растворение.  [c.78]

Чистый никель имеет ограниченное применение в качестве конструкционного материала и в химической промышленности практически полностью заменен нержавеющими сталями. Высокая устойчивость никеля в щелочах позволяет использовать его в некоторых производственных и лабораторных установках. Наиболее широкое применение получил никель как гальваническое декоративное и защитно декоративное покрытие, наносимое на стальные детали и изделия из медных сплавов самостоятельно или в составе многослойных покрытий. Иногда в химической промышленности применяется плакированная никелем сталь.  [c.140]

В табл. 19.17 приведены данные, показывающие ингибирующее действие на сталь хроматов в сочетании с некоторыми другими веществами. При этом заметный защитный эффект наблюдается лишь при наличии в рассоле щелочи.  [c.330]

Так, высокими защитными свойствами в двухфазной системе углеводород-электролит, насыщенной сероводородом, обладают углеводородорастворимые 5 -алкилфенилтиогликолевые кислоты, получаемые взаимодействием алкилтиофенопов и мо-нохлоруксусной кислоты в присутствии щелочи. Защитный эф-фет - 85-100% 22].  [c.33]

Подготовленные заготовки опускают в ванну с раствором кислоты или щелочи в зависимости от материала, из которого они изготовлены. Незащищенные металлические поверхности загоювок подвергаются травлению. Чтобы скорость травления была постоянной, концентрацию раствора поддерживают неизменной, а для большей интенсивности процесса травления раствор подогревают до температуры 40—80 °С. После обработки заготовки промывают, нейтрализуют, еще раз промывают горячим содовым раствором, сушат и снимают защитные покрытия.  [c.410]

Уменьщение pH растворов не-окнелительных кислот обычно приводит также к увеличению растворимости продуктов коррозии, которые не создают защитных пленок на поверхности металла. Растворы с высокими значениями рЫ (щелочные среды) растворяют металлы, гидраты окислов которых амфотерны, т. е. растворимы в кислотах и щелочах. Такими металлами являются алюминий, цинк, свинец, олово и некоторые другие. При этом в кислотах образуются ионы растворяющихся металлов, а в щелочных растворах — комп.тсксные ионы, в то время как самостоятельные катионы металлов в этих растворах отсутствуют.  [c.70]

Равномерная коррозия металлов наблюдается в тех случаях, когда агрсссншнче среды не образуют защитных пленок на металле или когда сплав состоит из равномерно распределенных мелкозернистых анодных и катодных участков. Р1нтенсивиая равномерная коррозия наблюдается при коррозии меди в азотной кислоте, железа в соляной кислоте, алюминия в едких щелочах, цинка в серной кислоте. В некоторых случаях равномерная коррозия не вызывает значительного разрушения металла, тем не менее она может быть нежелательной из-за других причин (потускнение поверхности металла, загрязнение раствора продуктами коррозии и др.). При равномерной коррозии продукты коррозии обычно не отлагаются па поверхиости металла.  [c.160]

В концентрированных растворах едких щелочей стойкость никеля обусловлена защитной гидроокисной пленкой так, при концентрации едкого натра до 50% скорость коррозии не превышает 0,003 мм1год. В сухом аммиаке и в разбавленных растворах аммонийных солей никель стоек при нагревании и усилении доступа воздуха он нестоек.  [c.256]

Коррозия евинца в значительной степени зависит от pH среды (рис. 180). Подъем кривой коррозии в правой части графика соответствует образованию плюмби-тов. В растворах едких щелочей свинец подвержен сильной коррозии с образованием растворимых // I I I I- I I-1 I плюмбитов РЬО и (плюыбатов РЬО ). Повышение кривой в левой части графика связано с увеличением концентрации водородных ионов, что ускоряет процесс водородной деполяризации и в ряде случаев препятствует образованию на свинце защитной пленки.  [c.264]

В холодной соляной кислоте иа серебре образуется нерастворимая защитная пленка хлористого серебра, которая достаточно устойчива. Горячая соляная кислота растворяет эту пленку и вызывает дальнейщее растворение серебра. В присутствии окислителей разрушающее действие соляной кислоты усиливается. Так же действует и плавиковая кислота. Серебро обладает исключительно высокой стойкостью в едких щелочах как 11 их йодных растворах, так и в расплавах.  [c.275]

В жесткой воде на стали может возникнуть обладающее некоторыми защитными свойствами покрытие, которое состоит в основном из СаСОз. Эта покровная пленка осаждается под действием щелочей — продуктов реакции, образующихся на катодных участках поверхности. Аналогичные покрытия постепенно образуются на катодно защищенной поверхности в контакте с морской водой (быстрее при высокой плотности тока). В случае хорошего сцепления с поверхностью такие покрытия способствуют также лучшему распределению защитного тока и уменьшению необходимого общего тока.  [c.221]


Высокохромистые чугуны марок 4X28, 4X32 обладают высокой химической стойкостью в ряде агрессивных сред азотной, серной, фосфорной кислотах, в растворах щелочей, солей, морской воде и др. Хром при таких концентрациях (28%, 32%) образует защитную шюнку СггОз. Микроструктура этих чугунов соответствует микроструктуре доэвтектических белых чугу-нов Наряду с высокой коррозионной стойкостью, чугун имеет высокую износостойкость, жаропрочность, окалиностойкость. При 30% хрома она достигает 1200 с, при 1100 с детали из этого чугуна могут работать до 3000 часов. Прочность не изменяется до 500 С, затем резко падает.  [c.62]

Используется в виде 30 %-ного раствора ингибитора в нефти. Ингибитор Север-1 при дозировке 0,1—0,2 кг на I м сточных вод плотностью 1,063 г/см , pH = 6,2—6,8, содержащих 0,16—0,27 кг/мз H2S, подается в течение 3 сут на прием центробежных насосов с периодичностью 20 сут. Эффективность защитного действия 70—96 %. Средний срок службы НКТ, задвижек, насосов, водовода увеличивается в 2 раза Предварительная подготовка трубопровода подземных вод пермских отложений плотностью 1,0021—1,0041 г/см=>, рН-6,6—8,4, температура 280 К, содержащих 0,011 — 0,013 кг/мз H2S, 0,003—0,004 кг/м О2 и 0,024 кг/мз СО2, состоит из последовательной закачки 10 м ингибированной НС1, 20 м3 воды, 10 м3 щелочи, промывки пере-  [c.161]

Поливинилхлорид применяется в виде пластмасс различной степени эластичности, j от жестких до высокой степени эластичных резнноподобных масс. Применяется он в виде лаков для защитных покрытий, так как имеет высокую химо-стойкость. Он стоек против воздействия крепких и слабых щелочей, разбавленных кислот, спирта, бензина и минеральных масел. Сложные эфиры,. кетоны, ароматические углеводороды и большинство -хлорированных углеводородов частично раств0рЯ10т массы из поливинилхлорида или вызывают их набухание.  [c.80]

Вследствие асимметрии строения (из-за наличия атомов I) поливинилхлорид является полярным диэлектриком и имеет пониженные свойства по сравнению с неполярными полимерами (табл. 6-3). Влажность слабо сказывается на удельном сопротивлении поливинилхлорида (его р даже при 90 %-ной влажности воздуха вьпие 5-10 Ом-м), но заметнее влияет на Поливинилхлорид стоек к действию воды, щелочей, разбавленных кислот, масел, бензина и спирта. Он используется в технике и в быту для изготовления пластических масс и резиноподобных продуктов, в частносш для изоляции проводов, защитных оболочек кабелей и т. п.  [c.112]

Защитный сдой вз органических водокон 0,13—0,76 Состоит ив дайнеля, дакрона, акриловых, полипропиленовых волокон Содержит -10% волокон п 90% связующего. Может быть совершенно прозрачным. Существует стандартная спецификация для работ в НР или щелочах Для изделий, подверн еияых воздействию погодных условий. Улучшает абразивную стойкость п ударную прочность  [c.317]

Как уже отмечалось, образование гидроксида, происходящее на поверхности защищаемой конструкции, вызывает повышение pH. Поэтому при сочетании катодной защиты с покрытиями необходимо выбирать покрытия, устойчивые к действию щелочей, например битум, полиэтилен или эпоксидную пластмассу. Образование щелочей часто приводит к осаждению карбоната кальция на защищаемой конструкции. Со временем это может вызвать уменьшение потребности в токе. При слишком отрицательных защитных потенциалах (перезашите) на защищаемой поверхности может происходить образование газообразного водорода.  [c.69]

Мастика битумно-бутилкаучуковая (холодная) Вента ТУ 21-27-39-77 применяется для устройства защитных покрытий строительных конструкций от воздействия агрессивных сред, содержащих серную кислоту концентрацией до 15 %, фосфорную —до 60%, соляную —до 20%, щелочь до 30%. Мастика выпускается марки МББ-Х-120.  [c.72]

Разрушение защитных пленок может также наступить при химическом воздействии на них концентрированных едкого натра или кислых солей при упаривании воды. При этом едкий натр наиболее опасен для металла, так как он не упаривается досуха вследствие того, что при 320 °С переходит в расплав, обладающий весьма высокой коррозионной агрессивностью. При оценке влияния солей на устойчивость пленок необходимо иметь в виду, что в результате испарения на поверхности нагрева возникает тонкий пленочный слой воды с большой концентрацией веществ, находящихся в растворенном и нерастворенном состоянии в воде всего объема котла. Естественно, что температура в граничном слое выше температуры всего объема воды. Протекание всех водно-химических реакций и коррозионного процесса завершается в данном слое. В граничном слое могут образовываться отложения веществ, хотя концентрация их в объеме воды далека от предела растворимости. Поэтому на поверхности металла при испарении воды могут осаждаться легкорастворимые в воде соли, концентрация которых быстро достигает предела растворимости при испарении воды в граничном слое. Эти соли затем снова переходят в раствор, т. е. в ядерный слой воды всего объема котла при его остановке. Явлению хайд аута наиболее сильно подвержены МззР04 и другие фосфаты натрия, растворимость которых при 340 С снижается до 0,2 %, (25—30 % при комнатной температуре). Под слоем соединений фосфатов, выпадающих на поверхности стали, может развиваться пароводяная коррозия с образованием бороздок, что обусловлено разрушающим действием отложений на защитные пленки. В реакции с железом принимает участие как кислый фосфат, так и концентрат щелочи — продукты гидролиза тринатрийфосфата. Продуктом хайд аута является НагНР04, который разъедает металл.  [c.180]


Смотреть страницы где упоминается термин Щелочь защитная : [c.144]    [c.568]    [c.262]    [c.242]    [c.125]    [c.342]    [c.204]    [c.240]    [c.45]    [c.7]    [c.62]    [c.388]    [c.113]    [c.123]    [c.34]   
Общая металлургия Издание 3 (1976) -- [ c.284 ]



ПОИСК



Гидролиз цианистых растворов. Защитная щелочь

Щелочь



© 2025 Mash-xxl.info Реклама на сайте