Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свободные колебания Решение с применением теории оболочек

В этой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. В предыдущих главах было показано, что корректный расчет таких оболочек и пластин в большинстве случаев требует привлечения неклассических дифференциальных уравнений повышенного порядка. Там же (см. параграфы 4.1, 4.4, 5.2, 6.2) отмечалась важная особенность таких уравнений — существование быстропеременных решений экспоненциального типа, имеющих ярко выраженный характер погранслоев и существенных лишь в малых окрестностях краевых закреплений, точек приложения сосредоточенных сил, мест резкого изменения геометрии конструкции и т.д. Стандартные схемы численного интегрирования краевых задач на таком классе дифференциальных уравнений малоэффективны — попытки их применения встречают принципиальные трудности, характер и формы проявления которых подробно обсуждались в параграфе 4.1 (см. также [136]). Добавим к этому замечание о закономерном характере данного явления — существование решений экспоненциального типа с чрезвычайно большим (по сравнению с длиной промежутка интегрирования) показателем изменяемости в неклассических математических моделях деформирования тонкостенных слоистых систем, дифференциальными уравнениями которых учитываются поперечные сдвиговые деформации, обжатие нормали и другие второстепенные" факторы, естественно и необходимо. Такие решения описывают краевые эффекты напряженного состояния, связанные с учетом этих факторов, и существуют не только у неклассических уравнений, установленных в настоящей монографии, но и в других вариантах неклассических уравнений повышенного порядка, что уже было показано (см. параграф 4.1) на конкретном примере. Болес того, подобные явления наблюдаются не только в теории оболочек, но и в других математических моделях механики и физики. Известным классическим примером такого рода может служить течение Навье—Стокса — при малой вязкости жидкости, как впервые было показано Л. Прандтлем (см., например, [330]), вблизи обтекаемого тела возникает зона пограничного слоя. Такие задачи согласно известной [56, 70 и др.] классификации относятся к классу сингулярно возмущенных, т.е. содержащих малый параметр и претерпевающих понижение порядка, если положить параметр равным нулю. Проблема сингулярных возмущений привлекала внимание многих авторов [56, 70, 173, 190 и др.]. Последние десятилетия отмечены значительными достижениями в ее разработке — в создании и обосновании методов асимптотического интегрирования для различных  [c.195]


Применение уравнений трехмерной теории упругости к исследованию устойчивости упругих тел с учетом изменения их граничных поверхностей было предложено А.Ю. Ишлинским и Л.С. Лейбензоном [5, 6]. В трехмерной линеаризованной постановке в работах А. П. Гузя и его учеников [2, 7, 8, 9] были получены решения задач устойчивости анизотропных элементов конструкций, которые послужили основой для оценки точности различных прикладных теорий, использующихся в расчетной практике. Оказалось, что теория оболочек, в которой деформации поперечного сдвига учитываются в соответствии с гипотезой Тимошенко, позволяет находить критические нагрузки с незначительной погрешностью. Эта оценка относится и к таким интегральным характеристикам, как низшие частоты свободных колебаний оболочки из КМ. В то же время решение уравнений теории оболочек типа Тимошенко менее трудоемко, чем уравнений теории упругости, особенно в случае оболочек сложной геометрии. Такими, в частности, являются цилиндрические оболочки с волнообразной срединной поверхностью, которые при большом количестве волн принято называть гофрированными. Устойчивость последних рассматривалась в работах [10, 11] путем замены их эквивалентными ортотропными. Хотя экспериментальные данные обнаруживали более высокую эффективность гофрированных оболочек [10], приближенное дискретное решение не подтвердило возможности увеличения критических нагрузок за счет придания профилю поперечного сечения волнообразного характера. Недостатков приближенного подхода удалось избежать в работах [12-14], где устойчивость гофрированных оболочек рассматривалась с учетом изменяемости геометрических параметров по направляющей. Из проведенных авторами этих работ исследований вытекает, что при равновозможности общей и локальной форм потери  [c.105]

Уточненная теория динамики ортотропной цилиндрической оболочки построена I. Mirsky [S.1351 (1964). Он учитывал поперечные нормальные напряжения, влияние инерции вращения и поперечного сдвига. Применением принципа Гамильтона—Остроградского к уравнениям трехмерной теории упругости получены шесть уравнений движения в напряжениях и перемещениях. Для случая распространения свободных гармонических волн в бесконечной оболочке выведено дисперсионное уравнение, из которого определяются частоты (шесть ветвей) в зависимости от длины волны для изотропных (сталь) и неизотропных (цинк, магний, молибден, вольфрам) материалов при различных толщинах и числах окружных полуволн. Коэффициенты сдвига fe и fee определяются по R. D. Mindlin y [2.1501, зависимость от m и п не учитывается, что дает ошибку не более 10%. Для изотропного материала результаты сравниваются с точными решениями D. С. Gazis a", на основании чего автор полагает, что первые четыре формы колебаний описываются хорошо и это будет справедливо также для ортотропной оболочки.  [c.205]



Смотреть страницы где упоминается термин Свободные колебания Решение с применением теории оболочек : [c.193]   
Прочность, устойчивость, колебания Том 3 (1968) -- [ c.424 , c.425 ]



ПОИСК



Колебания оболочек

Колебания свободные

Оболочки Колебания свободные

Оболочки Теория — См. Теория оболочек

Оболочки — Применение

Решение для свободных колебаний

Свободные колебания оболочек колебания

Теории Применение

Теория колебаний

Теория оболочек

Теория оболочек — Применение



© 2025 Mash-xxl.info Реклама на сайте