Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термоупругость оболочек сферических

Зная частные решения для Ng, по формулам (5.4.2) и (5.5.1) находим соответствующие частные решения для s , s, и Q. Используя частные решения для усилий N , N , изгибающих моментов Mg, Mi, деформаций s , sj, х, и перемещений Ug, и, и удовлетворяя необходимым граничным условиям, рассмотренным в 5.6, определяем постоянные интегрирования С п=, 2,3, 4, 5), входящие в решения (5.8.43), (5.8.48) и (5.8.53). После этого решение задачи термоупругости для сферической оболочки, находящейся в осесимметричном температурном поле, может считаться законченным.  [c.152]


В качестве наиболее простой задачи термоупругости оболочек в 6.6 рассматривается задача о тепловых напряжениях в цилиндрической оболочке разрешающее уравнение этой задачи является дифференциальным уравнением четвертого порядка с постоянными коэффициентами. Далее выводятся разрешающие уравнения для других форм оболочек с постоянной кривизной меридиана (конической, сферической, торообразной). Для каждой из них в 6.7 составляется разрешающее уравнение в виде дифференциального уравнения второго порядка относительно комплексной функции, при этом используются известные в теории оболочек стати ко-геометрическая аналогия и комплексное преобразование уравнений. Анализ форм решений и граничных условий для этих оболочек излагается в 6.8.  [c.170]

Первые две главы посвящены выводу основных уравнений теории упругости для пространственной и плоской задач. В качестве приложения плоской задачи приводится расчет толстостенных цилиндров с днищем от внутреннего и внешнего давления и вращающихся дисков. Исследуются напряжения при действии силы на острие клина и полуплоскость. В пособии рассматриваются контактные напряжения и деформации при сжатии сферических и цилиндрических тел, дан расчет тонких пластин и цилиндрических оболочек, рассматривается кручение стержней прямоугольного, круглого постоянного и переменного сечений, дается понятие о задачах термоупругости, приводятся расчет цилиндров и дисков на изменение температуры, общие уравнения теории пластичности, рассматривается плоская задача, приводятся примеры.  [c.3]

На основе теории Новожилова Розен [244] исследовал температурные напряжения в оболочках из изотропных слоев при температуре, изменяющейся только по толщине. По мнению автора, его решение справедливо для замкнутых оболочек любой формы, однако, поскольку полученные в результате решения напряжения изменяются только по толщине, оно справедливо только для сферической оболочки. Лин и Бойд [172] получили уравнения термоупругости для произвольных оболочек вращения из орто-тропных слоев.  [c.228]

Для анализа термоупругих напряжений в сферическом корпусе на основании теории оболочек переменной жесткости построим геометрическую модель корпуса (рис. 4.17). При разбиении модели на элементы и выборе характерных сечений I - VI учитываем конструктивные особенности оболочечного элемента и характер распределения температур. Граничные условия при s = 0 = О, - Q  [c.185]


Наряду с механическими усилиями (внутреннее давление р, затяг, вес, опорные реакции) в расчет вводились тепловые нагрузки от перепадов температур (по толщине стенки, по окружности и по образующей), а также от разности температур между сопрягаемыми элементами. Температурные напряжения от тепловых нагрузок устанавливались на основе решения задач термоупругости для цилиндрических и сферических оболочек, пластин и стержней с различной жесткостью закрепления.  [c.30]

Вывод разрешающего уравнения, описывающего задачу о термоупругом равновесии оболочек вращения канонических форм (конической, сферической, торообразной), дается в 5.5.  [c.116]

Построение решений разрешающих уравнений приводится только для конической и сферической оболочек вращения ( 5.7 и 5.8). Термоупругая задача для цилиндрической оболочки, детально освещенная в работах [31, 42] и др здесь не рассматривается.  [c.116]

Осесимметричная задача разработана наиболее полно по сравнению с другими задачами пространственной термоупругости. Характерные математические трудности, связанные с решением этой задачи, можно установить при исследовании тепловых напряжений в толстостенной сферической оболочке и в коротком сплошном цилиндре. Задача о тепловых напряжениях в толстостенной сферической оболочке является типичной задачей, решаемой с помощью классических методов разложения переменных и представления величин, входящих в граничные условия, в виде рядов по полной ортогональной системе функций. Задача о тепловых напряжениях в коротком цилиндре вводит читателя в круг идей, реализуемых при исследовании тела вращения, для которого невозможно представить граничные значения искомых величин в рядах по полной ортогональной системе функций на всей его поверхности. Применяются в основном два метода решения такой задачи метод однородных решений, разработанный А. И. Лурье (1947) и В. К. Прокоповым, и метод суперпозиции решений для более простых граничных задач, истоки которого содержатся в работах Л яме (1861) и Матье (1890). Использование второго метода в нашей книге позволило изучить термоупругое напряженное состояние тела вращения конечных размеров во всей его области, включая и особые точки.  [c.9]

Важное практическое значение имеет решение вопросов концентрации динамических температурных напряжений в окрестности оболочечных, пластинчатых, стержневых, сферических, цилиндрических, круговых включений в твердых телах. Решение этих вопросов значительно облегчается, если область, занятую включением, удается исключить из рассмотрения таким образом, что их влияние характеризуется усложненными граничными условиями. Включения типа пластин и оболочек (один характерный размер мал по сравнению с двумя другими) рассмотрены в работе [45] для классического случая. В [47] исследованы случаи линейного включения (два характерных размера малы по сравнению с третьим) и объемного включения (все три размера включения соизмеримы) для классической квазистатической задачи термоупругости. В [49] выведены термомеханические граничные условия на поверхности тел с покрытиями типа пластин и оболочек.  [c.35]

В рассматриваемом случае термоупругое решение, будучи периодическим по О и конечным, дает полное решение задачи. При этом жесткое смещение оболочки вдоль оси фиксировано требованием, чтобы центр сферической оболочки при нагреве не перемещался.  [c.767]

Э. И. Григолюка, Я. С. Подстригача, Я. И. Бурака [25] излагается математическая постановка и методика решения возникающих в связи с нагревом задач оптимизации для пластин и оболочек с учетом их неоднородности. В книгах [123, 124] изложены основы теории и методы решения задач термоупругости для тел с различными упругими включениями. Большое внимание уделено изучению температурных полей и напряжений в телах с оболо-чечными, пластинчатыми, стержневыми, сферическими, цилиндрическими, круговыми включениями, для которых область, занятую включением, удается исключить из рассмотрения таким образом, что его влияние характеризуется усложненными граничными уело-  [c.6]


Если какая-либо из величин, характеризующих геометрию оболочки, нагрузку и термоупругие свойства материала, изменяется скачком на параллельном круге 0 = onst, можно разбить оболочку на две и упруго сопрячь решения для каждой из частей. Вопросы упругого сопряжения сферической оболочки с соосными оболочками вращения, а также подкрепления ее упругими кольцами рассмотрены в гл. 1 т. П. Сосредоточенным нагрузкам посвящена гл. 2 т. П. Пологие сферические оболочки рассмотрены в работах [3, 4, 9, 17 .  [c.737]


Смотреть страницы где упоминается термин Термоупругость оболочек сферических : [c.10]    [c.737]   
Прочность, устойчивость, колебания Том 1 (1968) -- [ c.739 , c.743 , c.752 , c.767 ]



ПОИСК



Оболочка сферическая

Термоупругость

Термоупругость оболочек



© 2025 Mash-xxl.info Реклама на сайте