Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изгиб Усилия касательные — Уравнения

Если поперечные силы проходят через цешр изгиба, то нормальные усилия определяются равенством (8.9.11), а касательные -(8.9.16). При этом интегралы по замкнутому контуру, входящие в эти уравнения,- заменяют интегралами с пределами л = О, i  [c.75]

В гл. 4 выводятся основные уравнения теории изгиба пластин. Это классические уравнения теории С. Жермен—Лагранжа—Кирхгофа, теории, учитывающей деформации поперечного сдвига и обжатия. С целью использования теории пластин в контактных задачах уравнения выведены для случая, когда к поверхности пластин приложены не только нормальные поверхностные усилия, но и касательные. Обсуждаются способы учета эффекта поперечного обжатия с целью построения корректных решений контактных задач.  [c.184]


В безмоментной теории распоряжаться краевыми смещением w и углом поворота уже нельзя, так как задание их непосредственно отражается на краевых значениях соответствующих обобщенных сил Тщ и Ml- Приняв, например, на границе оболочки оу = = О (т. е. заделав край в отношении нормального смещения и угла поворота), разумеется, уже невозможно считать, что на этом же краю Тщ = О, Mi =0, так как последнее противоречит первому. Из сказанного следует, что на краю безмоментной оболочки можно распоряжаться лишь компонентами вектора смещений, касательными к срединной поверхности, т. е. и и , в которых и должны формулироваться граничные условия безмоментной теории, если они задаются в смещениях. Необходимо далее учесть, что дифференциальные уравнения безмоментной теории в усилиях и в смещениях имеют разный порядок — соответственно второй и четвертый. Следствием является, что краевые условия для безмоментной оболочки не могут быть заданы полностью только в усилиях. Половина их обязательно должна быть задана в смещениях. Эта принудительность задания половины краевых условий в смещениях имеет следующий физический смысл как было указано в предыдущем параграфе, оболочка, не сопротивляющаяся изгибу, является не жестким телом, а механизмом, свободно допускающим смещения, соответствующие чистому изгибу. Надлежащим тангенциальным закреплением краев такие смещения, как правило, могут быть устранены, т. е. оболочка может быть превращена в жесткую систему. Для этой цели предназначены и должны быть использованы те принудительные граничные условия,  [c.88]

В добавление к этому напряжению, возникающему от усилия S, передаваемого от поясов, будет действовать в той же плоскости сЛ) касательное напряжение т", возникающее от изгиба стенки. Величина этих, напряжений получится из вышеуказанного уравнения  [c.120]

Система уравнений равновесия узловых усилий позволяет определить узловые перемещения, а зная узловые перемещения , мы получаем выражение для функции прогиба w (8.45) и далее можем определить изгибающие и крутящие моменты, а также нормальные и касательные напрялгения при изгибе пластины по уже известным формулам.  [c.225]

Остановимся кратко на задачах включения для цилиндрической оболочки. Для пластин эти задачи детально обсуждены в первых трех главах книги. Что 1 касается круговых цилиндрических оболочек, то работ в этой области немного. Можно сослаться на статью Ф. Фишера [75], в которой исследован случай бес- конечно длинной круговой цилиндрической оболочки с бесконечно длинным реб-ром, нагруженным в начале координат продольной сосредоточенной силой (ана- лог задачи Е. Мелана для пластины). Решение задачи стронтси путем разреза-ния оболочки по линии присоединения ребра. Получается незамкнутая панель,, к уравнениям которой сначала применяется преобразование Фурье по продоль- Ной координате. После этого интегрируются обыкновенные дифференциальные уравнения. Константы определяются в явном виде из условий стыковки с реб- > ром для изображения. Трудность, как обычно, состоит в вычислении интегралов. обратного преобразования. Это делается комбинированием квадратурных формул. и асимптотических разложений. Показано, что решеняе по теории пологих оболочек и теории И. Снмондса [82] практически совпадает. Эта задача с учетом изгиба ребер в цитированной статье Ф. Фишера решена впервые. Характер особенностей решения в окрестности приложенной силы, однако, в работе не выведен. Но можно отметить, что как и в задаче Мелана, касательные усилия взаимодействия между ребром и оболочкой будут иметь логарифмическую особен- ность в точке приложения силы. К задаче включения можно приписать и задачу  [c.322]


Нам нужно еще позаботиться о том, чтобы равнодействующая Q всех касательных усилий проходила через центр тяжести поперечного сечения. В противном случае мы будем иметь одновременное действие изгиба и кручения. Момент касательных напряжений относительно оси z представляется формулой Mz — X.zy + YzX)dxdy. Соответствующим выбором произвольной постоянной с в уравнении (96) мы всегда можем достигнуть того, чтобы обращалось в нуль. В самом деле, постоянная в правой части уравнения (96) соот-  [c.142]

Должна лежать в соприкасающейся плоскости той кривой, по которой располагается изогнутая ось, и когДа Бине (В1пе1) ввел уравнение моментов относительно касательной, то Пуассон на основании этого уравнения пришел к заключению,-что крутящий момент постоянен. Лишь постепенно возникло представление о двух изгибающих пара в двух главных плоскостях, и был найден способ определения меры закручивания. Когда эти элементы теории были получены, стало ясно, что, зная соотношения, связывающие, изгибающие и крутящие моменты с кривизной и степенью кручения и пользуясь обычными условиями равновесия, можно определить форму изогнутой оси, степень кручения стержня вокруг этой оси, а также растягивающую и Перерезы вающую силу в любом данном сечении. Изгибающие и крутящие. пары, а также растягивающая и перерезывающая силы, происходят от усилий, приложенных к, элементам поперечных сечений, и правильные выражения для этих пар и сил следует искать при помощи общей теории. Но здесь возникает затруднение, состоящее в том, Что общие уравнения применимы лишь тогда, когда смещения малы между тем для таких тел, как спиральные пружины, смещения ни в коем случае нельзя считать малыми. КирхГоф (КтеЬЬоК) первый преодолел Это затруднение. Он показал, что общие уравнения применимы со всей строгостью к малой части тонкого стержня, все линейные размеры которой того же порядка малости, что и диаметры, поперечного сечения. Он считал, что уравнения равновесия или движения такой части можно в первом приближении упростить, пренебрегая силами -инерции и массовыми силами. Исследования, содержащиеся в теории Кирхгофа, носят в значительной своей части кинематический, характер. Когда тонкий стержень подвергается изгибу и скручиванию, то каждый его элемент испытывает деформацию, аналогичную тем деформациям,. которые имеют место в призмах Сен-Венана но соседние элементы должны непрерывным образом переходить один в Другой. Для того чтобы выразить непрерывность этого рода, необходимы некоторые условия. Эти условия принимают форму диференциальных уравнений, которые связывают относительные смещения точек малой части стержня с относительными координатами этих точек и с величинами, которые определяют положение данной части относительно всего стержня в целом. Из этих диференциальных уравнений Кирхгоф получил картину деформации в элементе стерл я и нашел выражение для потенциальной энергии, отнесенной к единице -длины, через относительное удлинение, компоненты кривизны и степень кручения. Он получил уравнения равновесия и колебаний, варьируя функцию, Выражающую энергию. В случае, когда тонкий стержень подвергается действию внешних сил, приложенных лишь иа его концах, уравнения, которыми определяется форма изогнутой оси, идентичны, как показал Кирхгоф, с уравнениями движения тяжелого твердого тела вокруг неподвижной точки. Эта теорема носит название кинетической аналогии Кирхгофа .  [c.36]


Смотреть страницы где упоминается термин Изгиб Усилия касательные — Уравнения : [c.120]    [c.160]    [c.103]    [c.237]    [c.68]    [c.185]    [c.414]   
Прочность, устойчивость, колебания Том 1 (1968) -- [ c.0 ]

Прочность, устойчивость, колебания Том 1 (1966) -- [ c.0 ]



ПОИСК



I касательная

Изгибающее усилие

УРАВНЕНИЯ - УСИЛИЯ

Уравнение изгиба

Усилие при изгибе



© 2025 Mash-xxl.info Реклама на сайте