Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Концентрация Появление пластических зон и трещин

Разрушение деталей машин от напряжений, переменных во времени (см. рис. 3 и 4) может происходить при напряжениях, значительно меньших предела прочности Ов, и часто меньших предела текучести ат, если эти изменения напряжений повторяются достаточно большое число раз. Это объясняется появлением микроскопических трещин в местах концентрации напряжений или в зоне нарушения однородности структуры материала (раковин, шлаковых включений и т. д.), которые, постепенно увеличиваясь, сокращают рабочее сечение детали. Развитие этих трещин в результате циклических напряжений приводит в конце концов к разрушению детали обычно без проявлений пластической деформации. Такой вид разрушений ма-  [c.27]


Под действием переменных напряжений в деталях механизмов и металлоконструкций ПТМ происходит постепенное накопление повреждений. Этот процесс называется усталостью, а способность деталей сопротивляться усталости — циклической прочностью или выносливостью. В начальной стадии накопления циклических повреждений происходят пластические деформации отдельных кристаллов, из которых состоит металл. Эти пластические деформации вызывают перераспределение напряжений, и на поверхности ряда кристаллов возникают линии сдвига. Пластическое деформирование сопровождается упрочнением отдельных зон кристаллов и одновременно разрыхлением структуры в области внутрикристаллических дефектов. Под действием переменных напряжений, превышающих определенный уровень, начинают образовываться из линий сдвига микротрещины. Развиваясь, микротрещины переходят в макротрещины. Последние приводят к уменьшению прочностного сечения детали, и после того как размер трещины достигает предельного значения, наступает хрупкое разрушение детали. Таким образом, процесс усталостного разрушения можно разделить на две стадии [27]. Первая стадия — до начала образования макротрещины, вторая — от момента ее образования до разрушения детали. В настоящее время еще нет достаточно апробированных общих оценок закономерностей распространения трещин в деталях ПТМ сложной конфигурации. В связи с этим расчеты циклической прочности как до образования макротрещин, так и до полного разрушения носят идентичный характер [20]. Известно, что пределы выносливости, определенные по условию образования трещины и по условию оконча тельного разрушения, совпадают при коэффициентах концентрации аа < 2 -Ь 3. При высоких коэффициентах концентрации количество циклов, при которых происходит развитие макротрещины с момента ее образования до разрушения сечения, составляет 70—80 % от общего ресурса детали. Развитие усталостной трещины происходит в результате циклических деформаций в области вершины трещины. Установлено, что в общем случае распространение макротрещины от появления до полного разрушения детали можно разделить на три этапа [27], Первый этап характеризуется малой скоростью распространения трещины вдоль полос скольжения. На втором (основном) этапе трещина растет с примерно постоянной скоростью. На третьем этапе, когда трещина имеет уже большие размеры, скорость роста увеличивается и происходит мгновенное хрупкое разрушение (долом) детали. В то же время экспериментальные и теоретические исследования так же, как и эксплуатационные наблюдения, свидетельствуют о том, что не всегда появление трещины усталости приводит к разрушению детали (образца) [27]. В ряде случаев возникают нераспространяющиеся трещины или трещины с весьма малой скоростью роста. Очевидно, что разработка и использование возможностей уменьшения  [c.121]


На рис, 5.118 показано изменение микротвердости в зависимости от расстояния по мере удаления от места зарождения трещины. Измерения выполнены на приборе ПМТ-3 при нагрузке 1 Н (100 г). Для исследования использован шлиф в плоскости листа (стенки резервуара) после снятия поверхностного 0,8-мм слоя металла. Как видно из рис. 5.118, наблюдается некоторое увеличение микротвердости в пределах зоны не более 0,09 мм. Это указывает на небольшую по величине зону пластической деформации в окрестности очага зарождения трещины. Естественно предположить, что степень пластической деформации в зоне собственно зарождения трещины была выше. Эта зона в последующем была съедена коррозией. По сути формирование микротрещин вдоль околошовной зоны как очага зарождения макротрещины имеет коррозионно-механическое происхождение. Дальнейшей локализации коррозионного износа у основания валика способствуют не только концентрация напряжений от действия кольцевых напряжений, но и угловатость сварного соединения, вызывающая появление изгибных напряжений.  [c.371]

Разрушение металлов чаще всего наступает на завершающей стадии холодной пластической деформации. Для деформации и разрушения сварных соединений возникновение и развитие микропластической деформации в отдельных кристаллитах имеет серьезное значение, и, в частности, может быть одной из основных причин появления холодных трещин, которые образуются в различных зонах сварных соединений (в основном в зоне теплового влияния) через различные интервалы времени после завершения сварки. Для возникновения трещин необходимо наличие усилий, вызывающих упругую и локальную, или микропластическую деформацию. В ненагруженном сварном соединении такими усилиями являются остаточные сварочные напряжения. Поэтому все явления, ведущие к повышению уровня остаточных сварочных напряжений, способствуют появлению холодных трещин. Это может быть большая скорость охлаждения, концентрация и пересечение сварных швов, жесткие и замкнутые контуры сварных участков, резкие переходы сечений, локализация нагрева. Принимая меры к устранению указанных факторов, можно предотвратить появление холодных трещин.  [c.8]

Опытами установлено, что протяженность зоны пластических деформаций увеличивается с увеличением зазора, с ростом притупления режущих кромок обычно ширина этой зоны больше для мягких металлов, чем для твердых. Объясняется это тем, что с уменьшением зазора и притупления кромок растет концентрация напряжений у режущих кромок, а следовательно, уменьшается ширина наклепанной зоны вследствие большей локальности распределения деформаций. Более мягкие металлы дают большее смятие металла под инструментом, что увеличивает ширину контактного участка, а это одновременно с ростом глубины внедрения до появления трещин приводит к увеличению ширины наклепанного слоя. Как показали опыты, ширина наклепанного слоя от поверхности раздела колеблется от 0,3 до 0,5 толщины заготовки.  [c.56]

Встречаются валы из стали, легированной небольшими количествами хрома и никеля. Стали с содержанием 0,25—0,55% С склонны к закалке, поэтому неравномерный нагрев и быстрое охлаждение места сварки могут привести к образованию твердых закаленных структур в зоне термического влияния. Это резко снижает пластические свойства металла, приводит к концентрации напряжений и образованию трещин. При наличии знакопеременных динамических нагрузок такое сварное соединение работать не может. Чтобы уменьшить скорость остывания сварного соединения и избежать появления закалочных структур в переходных зонах, необходимо перед началом сварки произвести местный или общий предварительный нагрев до температуры, определяемой содержанием углерода в металле.  [c.93]

Повышенная склонность легированных сталей к закалке по сравнению с углеродистыми объясняется увеличением устойчивости переохлажденного аустенита и уменьшением скорости роста перлитных образований. Поэтому характер и скорость структурных превращений в околошовной зоне в значительной степени зависят от физико-химических свойств легирующих элементов и их концентрации, от скорости охлаждения в процессе сварки, которая будет тем больше, чем ниже начальная температура свариваемой стали. Низкая теплопроводность теплоустойчивых сталей в сочетании с крупнозернистым аустенитом и быстрым охлаждением способствуют появлению трещин в околошовной зоне, образование которых происходит в процессе мартенситных превращений при температуре 150—200°С, когда металл обладает малой пластичностью и высокой прочностью. Существенное значение в образовании трещин при этих процессах имеют также и напряжения, возникающие вследствие выделения молекулярного водорода, локализующегося в малых объемах [9]. Аустенитные превращения, окруженные жесткой мартенситной средой, и напряжения резко снижают способность металла воспринимать пластические деформации, что приводит к хрупкому разрушению в виде надрывов или отдельных трещин, достигающих значительных размеров.  [c.46]


В предыдущих параграфах рассмотрено влияние различных обстоятельств на взаимодействие наконечника с деталью в зоне сварки и взаимодействие деталей в зоне соединения. Не менее важен вопрос о колебаниях деталей вне зоны сварки с частотой возбуждения / (назовем их паразитными колебаниями), вызванных упруго-пластическим взаимодействием наконечника (колеблющегося с этой частотой) с верхней деталью. Паразитные колебания деталей снижают прочность уже сваренных соединений (ранее сваренные соединения на многоточечных конструкциях могут даже разрушаться) и обусловливают динамическое нагружение деталей, опасное вследствие возможности появления трещин в местах концентрации напряжений. Чтобы избавиться от этих неприятных явлений, рекомендуют изменять положение деталей по отношению к направлению колебаний, от чего изменяются условия их возбуждения, или же демпфировать колебания с помощью массивных прижимов и изменять размеры деталей, чтобы избавиться от особенно опасных резонансных колебаний [34, 39]. Эти общие рекомендации применимы в любых случаях, когда надо подавить паразитные упругие колебания. При использовании ультразвуковой сварки необходимы были бы более конкретные рекомендации, которые отвечали бы, скажем, на вопрос, как выбрать шаг многоточечных соединений, где располагать демпфирующие массы и т. д. Такие рекомендации отсутствуют, поскольку характер паразитных колебаний еще недостаточно изучен. В настоящем параграфе описаны эксперименты, поставленные для выяснения характера колебаний деталей при сварке. На их основе, в частности, даны рекомендации но выбору шага многоточечных соединений. Кроме того, здесь определены реактивные составляющие нагрузки, обусловленные свариваемыми деталями эти величины понадобятся при рассмотрении режима работы сварочных колебательных систем (см. следующий параграф).  [c.91]

Расчет строительных конструкций осуществляется в соответствии со строительными нормами и правилами [1]. Получаемый при этом уровень номинальной нагруженности сварных элементов и уровень концентрации напряжений свидетельствуют о возникновении в зонах концентрации локальных пластических деформаций, которые при повторном характере внешней нагрузки приводят к образованию трещины малоцикловой усталости. Так, при обследовании воздухонагревателей доменных печей появление трещин в кожухе было зафиксировано после 2—3 лет эксплуатации, что соответствовало 5 — 6 тыс. циклов. В подкрановых балках тяжелого режима работы повреждения в виде поверхностных трещин вдоль угловых швов приварки верхнего пояса к стенке наблюдались при числах циклов до 2 х 10 , или после 4 лет эксплуатации, в газгольдерах аэродинамических станций — после 4 X 10 циклов нагружения. Опасность появления трещин малоцикловой усталости в сварных конструкциях связана с тем, что трещина данной длины может при определенном соотношении уровня 4нагрузки, климатической температуры эксплуатации, скорости нагружения и других факторов оказаться критической, что приводит к катастрофическому хрупкому разрушению. Раз-рушение может наступить в разный период эксплуатации в зависимости от наступления критического сочетания инициирующих факторов. В этом заключается определенное отличие в разрушении циклически нагруженных конструкций по сравнению со статически нагруженными, основная масса аварий которых приходится на период эксплуатации с первыми похолоданиями при дальнейшей эксплуатации таких конструкций число хрупких разрушений резко сокращается (рис. 9.1). Для циклически нагруженных конструкций в первую зиму и во время испытаний разрушается только 34% конструкций от общего числа зарегистрированных разрушений. При последующей эксплуатации в течение примерно трех лет разрушения отсутствуют, и затем число разрушений начинает увеличиваться с 4 до 10% в год. Такой характер распределения разрушений конструкций под воздействием повторных нагрузок связан с необходимым периодом подрастания дефектов до критических размеров, и поэтому в течение определенного периода разрушения не наблюдаются. При дальнейшей эксплуатации идет накопление повреждений и развитие трещин усталости до образования полного разрушения.  [c.170]

Положение существенно меняется при наличии концентраторов напряжений. Во-первых, при явно выраженной склонности к межзеренному разрушению металла околошовной зоны, он становится чувствительным к концентрации напряжений и кривая 2 длительной прочности образцов с концентратором в этом случае пойдет ниже кривой 1 для гладких образцов. Следовательно, пересечение кривых 2 и 5 наступит раньше, чем кривых / и 5, в результате чего следует ожидать в данном случае ускоренного появления трещин за время 1. При наличии концентратора разрушение практически бездеформационно, поэтому даже небольшие пластические деформации, характерные для релаксации остаточных напряжений, будут приводить к появлению трещин.  [c.100]

Из результатов анализа термодинамических условий газосо-держания в металле и сохранения степени его пластических свойств после длительной эксплуатации, водородное охрупчивание не может быть определяющим в этих средах (его равновесный потенциал Фн+/н = - 880 мВ) [219]. Вследствие электрохимической гетерогенности поверхности и повышенной активности приграничных зон, связанных с концентрацией примесных атомов, концентрацией напряжений и ослаблением защитной пленки, локализованной на границе, процесс электрохимической коррозии вызывает появление микрокор-розионного повреждения. Это повреждение перерастает в трещину в результате совместного влияния электрохимической коррозии и растягивающих напряжений. Адсорбирующиеся в вершине трещины ионы облегчают развитие трещины.  [c.347]


Наиболее вероятно хрупкость вызывается давлением молекулярного водорода, выделяющегося в порах, трещинах и в др. несплошностях металла, а также в зоне концентрации дефектов строения, особенно в процессе пластического деформирования. Предполагается, что охрупчивающее действие водорода связано с диффузией его к очагам будущего разрушения или к фронту растущей трещины в зонах растягивающих напряжений, если скорость деформации меньше скорости диффузии водорода. Именно с влиянием водорода связано появление склонности к так называемому замедленному разрушению.  [c.154]

Холодные трещины образуются при температурах ниже 250 °С в результате концентрации растягивающих напряжений на малопластичных участках металла шва и зоны сплавления. Наиболее склонны к образованию холодных трещин высоколегированные алюминиевые сплавы, сварные соединения которых значительно уступают по прочности подвергнутому термомехаиической обработке основному металлу, а границы зерен литого металла шва и зоны сплавления имеют практически сплошную сетку малопластичных выделений избыточных фаз. Особенно велика опасность появления холодных трещин в случае расположения таких соединений в углах и уменьшенных сечениях, когда существующая структурная микро- и макроконцентрация напряжений усугубляется неблагоприятной конструкцией соединения. Часто причиной появления холодных трещин служит ударная правка и рихтовка пространственных элементов, экспандирование обечаек и другие технологические операции, которые способствуют концентрации пластических деформаций в менее пластичном мета.т ле шва и зоны сплавления.  [c.85]


Смотреть страницы где упоминается термин Концентрация Появление пластических зон и трещин : [c.232]    [c.188]    [c.264]    [c.322]   
Прочность устойчивость колебания Том 2 (1968) -- [ c.351 , c.355 ]



ПОИСК



338, 344, 346 — Появление пластических зон и трещин

344, 345, 349—351 — Появление

Концентрация Появление пластических зон

Концентрация Появление трещин



© 2025 Mash-xxl.info Реклама на сайте