Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Зубчатые колеса Поверхности рабочие — Радиусы

Контактная прочность зубчатых колес зависит от приведенного радиуса кривизны зубьев (по формуле Герца) и от условий смазки их рабочих поверхностей. Величина угла Рд ограничивается пределами Рд 10 -н 24°. При ширине колес 6 < 1,1 р. пятно контакта уменьшается в конце зацепления пары зубьев, и прочность передачи снижается.  [c.342]

Требования к указанию шероховатости поверхностей зубьев, рабочего профиля и размеров фасок или радиусов закруглений на кромках поверхностей выступов и кромках торцов зубьев точно такие же, как к цилиндрическим зубчатым колесам по ГОСТ 2.403—68.  [c.132]


Во многих цехах заводов транспортного машиностроения для оценки плавности работы зубчатого колеса производится контроль погрешности основного шага цилиндрических зубчатых колес. Иногда применяют приборы иностранных фирм и, в частности, фирмы Мааг (Швейцария). В этом приборе имеется один тангенциальный (в виде плоскости) и один точечный измерительные наконечники. При обычных измерениях с помощью этих приборов осуществляется контроль отдельных значений основного шага. Однако в процессе рабочего зацепления погрешность основного шага проявляется на всем перекрытии соседних профилей и, следовательно, измерение отдельных значений основного шага является недостаточным. Кроме того, при определении непрерывной погрешности основного шага у зубчатых колес, боковая поверхность которых подвергается шлифованию методом обката, выясняется ошибка в заправке шлифовального круга, т, е. ошибка, которую можно рассматривать как отклонение радиуса основной окружности.  [c.205]

Общие сведения. Эвольвентные зубчатые колеса, получившие широчайшее распространение в мировом машиностроении, имеют ряд недостатков 1) малые приведенные радиусы кривизны рабочих поверхностей зубьев, способствующие высоким контактным напряжениям 2) повышенная чувствительность к прогибам валов и перекосам их осей из-за первоначального контакта зубьев по линии 3) существенные потери на трение, вызванные значительным скольжением зубьев.  [c.287]

Ввиду сложности точного графического построения профилей зубьев на сфере (так как она не развертывается на плоскость), на практике пользуются приближенным методом профилирования зубьев конических колес на развертках дополнительных конусов ЕО Р и РО В (рис. 21). Длину образующих 0 Р и О Р конусов принимают равной радиусам R i и начальных окружностей эквивалентной пары цилиндрических колес. Если поверхности дополнительных конусов развернуть на плоскость, на которой построены профили зубьев эквивалентных цилиндрических зубчатых колес, то окажется, что в пределах рабочего участка отклонения указанных профилей незначительны. Это позволяет рассматривать зацепление конических зубчатых колес как зацепление так называемых эквивалентных цилиндрических колес, у которых теоретические размеры зубьев (модуль, толщина зуба, высота головки и пр.) близки к размерам зубьев конических колес. При этом R == r ,i/ os ё , R = шз/ os 63, где r i и Гц,2 — радиусы оснований начальных конусов конических колес.  [c.40]


Контактные напряжения и контактная прочность зубчатых колес некорригированного зацепления, как следует из предыду-щ его, определяются следующими геометрическими параметрами радиусами кривизны рабочих поверхностей (или межосевым расстоянием и передаточным числом и) и шириной Ь, н о не зависят от модуля.  [c.268]

Эвольвентное зацепление нашло преимущественное применение в приборо- и машиностроении благодаря простоте образования профиля, а также тому обстоятельству, что на правильность зацепления не оказывает влияния изменение межцентрового расстояния, как это имеет место при всех разновидностях циклоидального зацепления. Здесь боковая поверхность зубьев по всей их рабочей высоте очерчивается эвольвентой, поэтому линия зацепления (траектория движения точек касания зубьев двух колес — линия р Р2 на рис. 38) есть прямая, касательная к основным окружностям с радиусами Го и Гог зубчатых колес. Угол зацепления а (угол между линией зацепления и нормалью к линии 0 Ог центров колес) постоянен. В нормальном (нулевом) эвольвентном зацеплении а = 20°. Делительная окружность разбивает высоту зуба ка головку и ножку.  [c.65]

Они компактны и отличаются малым весом. Допускаемую нагрузку на 1 см длины контактных линий при больших передаточных числах в среднем можно считать пропорциональной меньшему радиусу кривизны рабочих поверхностей в полюсе зацепления, который в червячной передаче примерно во столько раз больше, чем в зубчатой, во сколько диаметр червячного колеса больше диаметра шестерни зубчатой передачи. Данное преимущество червячной передачи компенсирует такие её недостатки, как малая эффективная ширина червячного колеса и обычно меньшая прочность его материала по сравнению с материалами зубчатых колёс.  [c.215]

На чертеже зубчатою или червячного колеса или звездочки ценной передачи и других должно быть изображение изделия с конструктивными размерами (для цилиндрического зубчатого колеса, например, указывают диаметр вершин зубьев, ширину венца, размеры фасок или радиусы кривизны линий притупления на кромках зубьев, шероховатость боковых поверхностей зубьев). В правом верхнем углу чертежа на расстоянии 20 мм от верхней внутренней рамки помещают таблицу параметров, состоящую из трех частей 1) основные данные 2) данные для контроля 3) справочные данные. Части отделяют друг от друга основными линиями Неис-полЕ.зуемые строки таблицы параметров исключают или прочеркивают. Пример простановки параметров зубчатого венца на рабочем чертеже прямозубого цилиндрического зубчатого колеса со стандартным исходным контуром приведен на рнс. 15.2.  [c.242]

Рабочие поверхности зубьев начинают взаимодействовать в точке /(, расположенной на одном торце зубчатых колес. При вращении зубчатых колес точка контакта К перемещается по линии зацепления КК, параллельной полюсной линии И7Ц7, являющейся линией касания начальных цилиндрических поверхностей радиусов 0,5 0,5с1 х, , в направлении стрелки и зубья выходят из зацепления на противоположном торце. Поэтому рабочая часть линии зацепления равна ширине зацепления Ь х>.  [c.123]

Смазка зубчатых колес редукторов при окружных скоростях до г = = 12... 15 м/с осуществляется окунанием колес в масляную ванну. Такой способ смазки зубьев называется смазкой окунанием или картерной смазкой. Вместимость масляной ванны принимается из расчета 0,35...0,7 л на 1 кВт передаваемой мощности (меньшее значение — при меньшей вязкости масла, и наоборот). Масло должно покрывать рабочие поверхности зубьев, а потери передаваемой мощности на сопротивление масла вращению зубчатых колес и соответственно на нагрев масла должны быть минимальньпли. Так как во время работы редуктора происходят колебания уровня масла, то рекомендуется зубчатые колеса погружать в масляную ванну для цилиндрических передач на глубину не менее 0,75 высоты зубьев, а для конических передач вся длина нижнего зуба должна находиться в масле. Тихоходные зубчатые колеса второй и третьей ступеней редуктора при необходимости допускается погружать в масло на глубину до 7з радиуса делительной окружности. Чтобы избежать глубокого окунания колес в ванну, колеса первой ступени смазывают с помощью смазочной текстолитовой шестерни (рис. 12.33, а) или другого подобного устройства. Иногда для колес разных ступеней предусматривают раздельные ванны. В редукторах с быстроходными передачами применяют струйную или циркуляционную смазку под давлением. Масло, прокачиваемое насосом через фильтр, а при необходимости и охладитель, поступает к зубьям через трубопровод и сопла. При окружной скорости до V = 20 м/с для прямозубых передач и до и = 50 м для косозубых масло подается непофедственно в зону зацепления (рис. 12.33, б), а при более высоких скоростях во избежание гидравлических ударов масло подается на зубья шестерни и колеса отдельно на некотором расстоянии от зоны зацепления. Смазку подшипников редукторов при окружной скорости зубчатых передач V >  [c.214]


Рассмотрим принцип действия индивидуально-дискового эвольвентомера БВ-1089 (рис. 12.26). Проверяемое зубчатое колесо 2 устанавливают на одной оси со сменным диском I, диаметр которого равен диаметру основной окружности колеса. Этот диск прижимается пружиной к доведенной обкатывающей линейке 5, закрепленной на каретке 6 прибора. При перемещении каретки ходовым винтом 5 движение (без скольжения) передается диску и вместе с ним проверяемому колесу. При этом каждая точка рабочей плоскости линейки описывает относительно диска эвольвенту. Над линейкой в одной вертикальной плоскости с ее рабочей поверхностью расположен измерительный наконечник рычага 4, другое плечо которого соприкасается с наконечником индикатора 8. По шкале 9 определяют угол развернутости проверяемого колеса, а по шкале 7 — смещение каретки из исходного положения, при котором измерительный на-койечник касается профиля зуба на радиусе основной окружности колеса.  [c.289]

В эвольвентном зацеплении взаимодействие рабочих поверхностей зубьев происходит по прямой линии. Поэтому при неточности взаимного расположения колес или их деформации под нагрузкой плотность контакта зубьев становится неравномерной, что приводит к концентрации дав.оений на определенных участках контактных линий. Кроме того, радиусы кривизны рабочих поверхностей зубьев, которые определяют нагрузочную способность зубчатого механизма, зависят от диаметра основного цилиндра колеса чтобы увеличить радиусы кривизны, нужно увеличивать диаметры колес. Для того, чтобы избежать указанных недостатков, применяют зацепление с теоретически точечным контактом взаимодействующих зубьев, который за счет придания зубьям соответствующей формы под нагрузкой превращается в контакт по площадке.  [c.119]


Смотреть страницы где упоминается термин Зубчатые колеса Поверхности рабочие — Радиусы : [c.130]    [c.270]    [c.205]    [c.257]    [c.340]    [c.185]    [c.513]   
Детали машин Том 3 (1969) -- [ c.0 ]



ПОИСК



Колесо, рабочее

Колёса Рабочий радиус

Поверхности зубчатые

Поверхности рабочие

Радиус поверхности

Радиусы



© 2025 Mash-xxl.info Реклама на сайте