Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Смазочные Питатели

Ручная централизованная смазка осуществляется при помощи коллекторов или блоков с пресс-масленками, питателей с ручным переключением и ручных систем густой смазки со смазочными питателями с автоматическим переключением, сдвоенным трубопроводом и ручными станциями. Во всех этих случаях коллекторы (блоки) и смазочные питатели соединяются с отдельными точками смазки при помощи труб. При централизованной ручной смазке подача смазочного материала производится из одного места к целому ряду точек.  [c.13]


Все сказанное выше относительно установки смазочных питателей и присоединения их к магистрали в ручных системах густой смазки полностью относится и к автоматическим системам.  [c.106]

Станция работает следующим образом. Через определенные, заранее установленные интервалы времени командный электропневматический прибор КЭП-3 включает электродвигатель автоматической станции, и плунжерный насос начинает нагнетание смазки из резервуара станции через реверсивный клапан к смазочным питателям по одной из подающих магистральных труб. Под давлением смазки в трубопроводе начинают срабатывать смазочные питатели, которые при этом подают строго определенные порции густой смазки к обслу-  [c.107]

Смазочные питатели подразделяются на питатели с автоматическим и ручным переключением. Смазочные питатели с автоматическим переключением применяются в централизованных автоматических и ручных системах густой смазки для периодической подачи  [c.117]

На фиг. 63 показано устройство смазочного питателя. Питатель состоит из корпуса /, поршней -распределительных золотников 3, штоков 8, индикаторов 5 и винтов 6. В положении / нагнетание смазки производится по магистрали А. Под действием гидравлического  [c.117]

Фиг. 63. Схема устройства и работы смазочного питателя Фиг. 63. Схема устройства и <a href="/info/613403">работы смазочного</a> питателя
Фиг. 64 Автоматические смазочные питатели. Фиг. 64 Автоматические смазочные питатели.
Смазочные питатели изготовляются двух серий — А и Е. Серия А применяется при монтаже трубопровода густой смазки на зажимных гайках и уплотнителях и рекомендуется в тех случаях, когда не приходится опасаться частого повреждения трубопровода, смонтированного на обслуживаемых смазкой машинах, или когда на сравнительно небольших по габаритам и сложных по конструкции машинах приходится монтировать много труб густой смазки.  [c.121]


Смазочные питатели с ручным переключением (фиг. 65) применяются для периодической централизованной подачи дозированных порций густой смазки при помощи ручного шприца к нескольким  [c.122]

Ручная станция СРГ-12 (фиг. 67) применяется в неавтоматических централизованных системах для подачи консистентной смазки по трубопроводам к смазочным питателям.  [c.122]

Гидравлический реверсивный клапан (фиг. 69, поз. 3) применяется в системе для периодического переключения подачи смазки, нагнетаемой плунжерным насосом, с одной магистрали на другую за счет давления, развиваемого в обратном конце магистрали, после срабатывания всех смазочных питателей. Кроме того, при каждом переключении реверсивного клапана происходит переключение контактов конечного выключателя, установленного рядом с ним. Реверсивный клапан (фиг. 72) состоит из корпуса /, золотников 2 и 3, двух перепускных клапанов 4 и 5, предохранительного клапана 6 и конечного выключателя 7.  [c.128]

На фиг. 72 показана схема работы гидравлического реверсивного клапана. В положении / смазка, нагнетаемая насосом, проходит через реверсивный клапан в магистральный трубопровод / и через канал 8 — в левую полость золотника 2, удерживая его в крайнем правом положении. Смазка, выдавливаемая золотниками питателей в магистраль II, не находящуюся в данный момент под давлением, вызывает поступление соответствующего объема смазки из этой магистрали через реверсивный клапан обратно в резервуар станции. После срабатывания всех смазочных питателей давление в магистрали /начинает быстро повышаться до тех пор, пока не будет преодолено сопротивление пружины перепускного клапана 4. В этом случае (положение//) густая смазка, нагнетаемая насосом, поступает в левую полость золотника 3 и перемещает его в крайнее правое положение. Смазка, находящаяся в правой полости золотника 3, при этом выдавится в резервуар станции. В конце перемещения золотника 3 в крайнее правое положение смазка, нагнетаемая насосом, получит возможность поступать в правую полость золотника 2 через канал 9. Благодаря этому почти одновременно с перемещением золотника 3 в крайнее правое положение происходит перемещение золотника 2 в крайнее левое положение. Смазка, находящаяся в левой полости золотника 2, также выдавливается в резервуар станции. При перемещении золотника 2 в крайнее левое положение он в конце своего хода производит переключение контактов конечного выключателя 7, которое вызывает разрыв цепи магнитного пускателя двигателя станции и прекращение нагнетания смазки плунжерным насосом в магистраль / (положение III).  [c.128]

Контрольный клапан давления (поз. 3, фиг. 60 и фиг. 77) применяется в централизованных автоматических системах густой смазки конечного типа для контроля величины давления, создаваемого в конце наиболее длинного ответвления магистрального трубопровода или двух наиболее длинных ответвлений, после срабатывания всех смазочных питателей. Как правило, после контрольного клапана давления ставится один смазочный питатель для постепенного обновления смазки, находящейся внутри клапана. Клапан (фиг. 76) состоит из корпуса 5, переключающего золотника 1, распределительного золотника 2, двух перепускных клапанов 3 ъ 4 я конечного выключателя 6, установленного на оДной плите с контрольным клапаном давления. На фиг. 77 показан общий вид клапана.  [c.133]

I — от магистрали, находящейся под давлением 2 — в магистраль, не находящуюся под давле-нием 3 — к смазочным питателям.  [c.137]

ОПРЕДЕЛЕНИЕ ПРОДОЛЖИТЕЛЬНОСТИ РАБОЧЕГО ЦИКЛА И ВЫБОР СМАЗОЧНЫХ ПИТАТЕЛЕЙ  [c.150]

Установив продолжительность рабочего цикла автоматической системы, приступают к подбору смазочных питателей для отдельных точек. Принимая во внимание разнообразие условий, в которых приходится работать этим точкам, а такн<е различные конструктивные особенности трущихся поверхностей, вопрос о количестве смазки, которую необходимо подавать на трущиеся поверхности, решается ориентировочно на основании практических данных. Выбор смазочных питателей для подшипников скольжения и других поверхностей трения скольжения (плоских поверхностей, подпятников, винтов и т. д.) облегчается применением номограммы и таблицы в зависимости от величины поверхности трения (диаметр, длина подшипников) и скорости относительного перемещения трущихся поверхностей (фиг. 95 и табл. 29).  [c.152]

При пользовании номограммой на ординате откладывается диаметр подшипника в миллиметрах, а на абсциссе — длина подшипника в миллиметрах. Обе точки проектируются на номограмму. Буквы, обозначающие площади, на которых пересекаются проекции точек, укажут по табл. 29 размер питателя, требуемого для различных скоростей. При выборе смазочных питателей для подшипников скольжения и подшипников качения под диаметром подшипника подразумевается соответственно диаметр цапфы и внутренний диаметр внутреннего кольца подшипника, а под длиной подшипника — соответственно длина вкладыша и ширина подшипника. При определении по номограмме расхода смазки, подаваемой от автоматиче-  [c.152]


При проектировании двухлинейных автоматических централизованных систем густой смазки следует учитывать 1) технологический процесс с точки зрения возможности одновременной работы отдельных машин, входящих в состав крупного агрегата, или работы их в разное время, 2) территориальное размещение машин, 3) желательную продолжительность рабочего цикла для отдельных групп машин и механизмов, 4) производительность автоматических станций, 5) протяженность магистральных трубопроводов, 6) количество смазочных питателей и их суммарную емкость,  [c.156]

В централизованных системах густой смазки магистральные трубопроводы для сокращения расстояния между трубами целесообразно монтировать на муфтах и соединительных гайках с трубной конической резьбой (количество последних должно быть сведено к минимуму). Соединение этих трубопроводов на фланцах будет обходиться дороже и вызовет нежелательное увеличение расстояния между трубами. Так как бесшовные стальные трубы обычно поставляются длиной 7 м, то сварка встык не всегда может быть допущена. Для отводов от магистральных труб к смазочным питателям, установленным на машинах, вместо тройников могут успешно применяться приварные бобышки.  [c.172]

Трубопроводы густой смазки на металлургическом оборудовании, которые в процессе эксплуатации постоянно подвергаются опасности повреждения, следует монтировать исключительно на соединительных частях с трубной конической резьбой по ГОСТ 6211-52 при широком применении толстостенных бесшовных труб 14 X 3 и 18 X 3 для соединения смазочных питателей с точками смазки и для магистралей системы смазки на машинах. На крупногабаритном оборудовании станов холодной прокатки применение толстостенных труб и смазочных питателей серии Е также вполне оправдано, так как при этом обеспечиваются сравнительно небольшие гидравлические потери даже при довольно большой длине труб. Применение в данном случае питателей серии А нецелесообразно, так как при этом сильно увеличивается гидравлическое сопротивление трубопровода благодаря применению труб небольшого прохода. Вследствие больших габаритов машин размещение на них толстостенных труб, обеспечивающих нарезание на их концах трубной конической резьбы, не вызывает никаких затруднений при монтаже. Для сокращения количества соединительных частей при выполнении трубопроводов густой смазки на машинах следует широко применять гибку труб.  [c.172]

Система густой смазки конечного типа (рис. 27) состоит из автоматической станции 1, магистральных трубопроводов 2, трубопроводов, идущих к смазываемым машинам и установленных на машинах смазочных питателей 3, контрольного клапана давления 4, щита 5 с пусковой, сигнальной, записывающей аппаратурой и приборами, а также другого оборудования и арматуры, аналогичных помещенным на схеме системы густой смазки петлевого типа.  [c.50]

Ручная система густой смазки (фиг. 56) состоит обычно из ручной станции 1, смазочных питателей 2, сдвоенного магистрального трубопровода 3 и трубопроводов, соединяющих смазочные питатели с точками смазки 4. На магистральных трубопроводах около станции обычно устанавливаются линейные сетчатые фильтры. Если к части точек смазка подается значительно реже, чем к основной массе точек, то подача смазки к ним производится через четырехходовой кран. В зависимости от длины для магистрального трубопровода на практике применяют трубы следующих размеров — при длине магистрали до 6 м — при длине до Юлг и при  [c.103]

Подача смазки двухлинейной ручной системой осуществляется качанием от руки рукоятки станции смазка подается к смазываемым точкам по одному из магистральных трубопроводов, а второй трубопровод при этом соединен через реверсивный клапан станции с ее резервуаром и не находится под давлением. В процессе нагнетания смазки смазочные питатели срабатывают под действием создаваемого насосом давления, т. е. через них к точкам смазки выдавливаются по трубам дозированные порции смазки. Когда манометр, установленный па станции, покажет давление 70 кПсм , нагнетание смазки прекращается, (так как при этом все питатели должны уже наверняка сработать), и после переключения золотника реверсивного клапана в другое положение производится повторное нагнетание смазки по второй магистрали. При этом первая магистраль разгружается от давления. Таким образом, ко всем смазываемым точкам подается удвоенная порция смазки. По окончании второго цикла подачи смязкн реверсивный клапан снова переключается, и, таким образом, во время паузы обе магистрали не находятся под давлением.  [c.105]

После срабатывания всех смазочных питателей давление в магистрали, по которой в данный момент производится подача смазки, начинает быстро возрастать, и по достижении в конце возвратной ветви главной магистрали (у реверсивного клапана) заранее установленной величины реверсивный клапан сработает и замкнет контакт выключателя КВД, вследствие чего катушка 1РП окажется под током, а катушка пускателя ПД обесточится, что повлечет за собой остановку электродвигателя. С этого момента начинается пауза, так как время работы насоса всегда меньше продолжительности цикла системы.  [c.111]

В этом случае насос автоматической станции работает и нагнетает густую смазку в одну из магистральных труб, откуда смазка проходит по отводам к смазочным питателям. При этом, вследствие того, что катушка реле 4РП обесточена, под током находится электромагнит реверсивного клапана 1ЭРК-  [c.115]

После срабатывания всех смазочных питателей давление в магистрали быстро повышается и по достижении заранее установленной величины у контрольных клапанов давления последние срабатывают один за другим и замыкают контакты конечных выключателей 1КВД и 2КВД, вследствие чего катушки 1РП, 2РП, ЗРП и 4РП оказываются под током, а катушка пускателя ПД будет обесточиваться (срабатывание одного контрольного клапана не вызывает никаких существенных изменений в схеме управления). Это обесточивает цепь пускателя электродвигателя и насос останавливается.  [c.115]


Заполнение резервуара станции густой смазкой производится при помощи ручного перекачного насоса через заправочный клапан. (фиг. 68). Нагнетание смазки в магистрали / и //, к которым присоединяются смазочные питатели, установленные, на машинах, производится качанием рукоятки 1, которая сообщает возвратно-поступательное движение плунжеру насоса 2. Переключение подачи сказки с одной магистрали на другую производится перемещением от руки золотника 4 реверсивного клапана из одного крайнего положения в другое. На схеме работы станции в положении / нагнетание смазки Плунжерным насосом производится в магистраль /. Магистраль II при этом соединяется через отверстие в корпусе с резервуаром станции.  [c.123]

Подача смазки в магистраль / производится до тех пор, пока не срзбохают все смазочные питатели, После этого золотник клапана  [c.123]

Принимая во внимание, что гидравлические потери в трубах заметно возрастают при понижении температуры, а наибольшее давление в магистрали у насоса будет в конце работы насоса перед его выключением, при выполнении этого расчета необходимо. прежде всего установить, при какой минимальной температуре должна работать данная система, и рассматривать такой момент, когда все питатели уже сработали и насос, продолжая работать, перед выключением создает в конце наиболее длинного ответвления магистрали у реверсивного клапана или контрольного клапана давление порядка 40 кГ/см . При этом давление в магистрали у насоса будет максимальным. Из этих 40 кПсм около 20 кПсм требуются в зимнее время для преодоления гидравлических потерь в трубопроводе от контрольного клапана давления до подшипника, включая потери в наиболее удаленном питателе и самом подшипнике, остальные 20 кГ/см представляют собой тот запас давления, который необходим для обеспечения срабатывания всех смазочных питателей при минимальной температуре окружающего воздуха. Так как после срабатывания всех питателей смазка, подаваемая насосом, не попадает к смазываемым точкам (за исключением неизбежной незначительной утечки), то весь объем смазки, нагнетаемый насосом в трубопровод, расходуется на ее сжатие и упругое расширение трубопровода, включая все его разветвления. При этом объем смазки, подаваемой насосом в единицу времени, будет распределяться по отдельным его разветвлениям для компенсации сжимаемости смазки и упругого расширения труб пропорционально емкости этих разветвлений.  [c.158]

В системах густой смазки для подвода смазки от смазочных питателей к подвижным смазываемым точкам, а также в системах жидкой смазки для соединения трубопроЕ.одов, подающих масло, широко применяются дюритовые шланги по ГОСТ 2299-43, изготовляемые заводом Каучук , а также заводами РТИ. Шланги (фиг. 105, а) состоят из внутреннего слоя маслостойкой резины, двух или нескольких слоев прорезиненной льняной ткани и наружного резинового слоя. По внутреннему диаметру шланги поставляются следующих размеров 4, 6, 8, 10, 12, 16, 18, 20, 22, 25, 27, 30, 32, 35, 40, 42, 51 и 54 мм. Длина шлангов может колебаться от 0,5 до 2 м. Шланги выдерживают рабочее давление не менее 13 кПсм и являются термостойкими в пределах температур от—30 до +130° С.  [c.165]

Централизованная ручная подача смазки при помош и смазочных питателей типа ПД, сдвоенного трубоцровода и ручной станции СРГ (рис. 24) применяется для смазки отдельно стоящих машин или группы машин, а также машин, перемещающихся в процессе работы (мостовые краны, завалочные и загрузочные машины, механизмы смены валков прокатных станов, тележки-опрокидыватели для слитков и другие механизмы).  [c.47]

Централизованные автоматические системы густой смазки применяются петлевого и конечного типа. Там, где оборудование сконцентрировано в одном месте, применяются системы петлевого типа, там, где оборудование вытянуто в длину, — системы конечного типа. При определении типа и количества систем учитывается интервал подачи смазки. Желательно от одной системы подавать смазку к механизмам, требующим одинакового интервала подачи смазки. Там, где это невозможно, устанавливают краны четырехходовые или с электромагнитным управлением, что усложняет системы. Принципиальная схема системы густой смазки петлевого типа (рис. 26) состоит из автоматической станции 1, магистральных трубопроводов 2 и трубопроводов 3 к смазываемым машинам, щита 4 с пусковой, сигнальной, записывающей аппаратурой и приборами, крана с электромагнитным управлением 5, обратных клапанов 6, четырехходового крана с ручным управлением 7, смазочных питателей 8, пневматического перекачного насоса для заполнения резер-  [c.49]

Система петлевого типа работает следующим образом. При включении электродвигателя плунжерный насос нагнетает смазку из резервуара станции через реверсивный клапан к смазочным питателям по одной из нагнетательных магистральных труб, обозначенных на схеме цифрой 2. Под действием давления смазки в трубопроводе на ответвлениях от магистрали начинают срабатывать смазочные питатели, которые подают строго определенные порции густой смазки к обслуживаемым точкам. После срабатывания всех смазочных питателей давление в магистрали, по которой нагнетали смазку, начинает быстро возрастать. По достижении давления в возвратной линии до величины, на которую настроена пружина реверсивного клапана, срабатывает перепускной клапан, расположенный в корпусе. Смазка проходит в реверсивный клапан и производит его перемещение, вследствие чего происходит переключение контактов конечного выключателя, который размыкает цепь магнитного пускателя электродвигателя, и насос останавливается. Пружина перепускного клапана настраивается на давление больше необходимого для срабатывания самых удаленных от станции смазочных питателей на 5—10 кг1см . После переключения реверсивного клапана при следующем цикле смазка поступает по другому трубопроводу (попеременное нагнетание смазки по двум трубам обусловлено конструкцией питателей). Нагнетание смазки по второму трубопроводу происходит через интервал времени, на который настроен прибор КЭП-129. При этом снова включается электродвигатель насоса станции и подает смазку по другому магистральному трубопроводу н весь цикл повторяется. Для контроля работы системы применяется самопишущий манометр МГ-410, который на диаграмме записывает работу станции как по времени, так и по давлению, создаваемому системой во время работы. Краны с электромагнитным управлением КСГ Vs", четырехходовой кран с электромагнитным распределителем и четырехходовой кран с ручным управлением устанавливаются на ответвлениях от магистрали к механизмам, нуждающимся в более редкой подаче смазки.  [c.50]


Смотреть страницы где упоминается термин Смазочные Питатели : [c.14]    [c.104]    [c.108]    [c.111]    [c.113]    [c.114]    [c.117]    [c.130]    [c.132]    [c.137]    [c.140]    [c.155]    [c.156]    [c.173]    [c.52]   
Смотреть главы в:

Смазка металлургического оборудования  -> Смазочные Питатели


Детали машин Том 2 (1968) -- [ c.124 , c.126 , c.131 , c.132 ]



ПОИСК



Определение продолжительности рабочего цикла и выбор смазочных питателей

Питатели Питатели

Питатель

Смазочные системы для для густой смазки централизованно.!Насосы 138, 142 — Питатели двухлинейные 138, 140, 141 — Питатели



© 2025 Mash-xxl.info Реклама на сайте