Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общее решение плоской задачи в полярных координатах

ОБЩЕЕ РЕШЕНИЕ ПЛОСКОЙ ЗАДАЧИ В ПОЛЯРНЫХ КООРДИНАТАХ  [c.129]

Примеры применения общего решения плоской задачи в полярных координатах. В качестве первого примера применения оби его решения плоский  [c.134]

Общее решение плоской задачи в полярных координатах  [c.204]

Решение этих уравнений производится на основе общего решения плоской задачи в полярных координатах, причем функция напряжений и перемещений, удовлетворяющая уравнению совместности записывается так  [c.195]


Этим приемом мы воспользуемся дальше при исследовании напряжений вблизи I круглых отверстий и при определении напряжений в круглом кольце, здесь жр приведем общее решение дифференциального уравнения плоской задачи в полярных координатах Выражение для функции напряжений представится так  [c.100]

Когда такое решение получено, то в общем случае оказывается, что оно дает ненулевые усилия (ст ., т е) на криволинейной поверхности цилиндра. Влияние устранения этих усилий находится с помощью решения обычной задачи для плоской деформации с использованием общей функции )апряжений в полярных координатах, приведенной в 431).  [c.484]

Общее решение неосесимметричной плоской задачи теории упругости в полярных координатах в рядах Фурье приведено в монографии [98]. Там же дано решение задачи об изотропном кольце, сжатом двумя сосредоточенными силами. Решение этой задачи для ортотропной среды дано в [27]. Двухслойные диски и кольца, нагруженные локальными усилиями, рассчитаны в монографии [15]. Там же приведена большая библиография. Расчету многослойных конструкций посвящены монографии [11, 49]. Методом осреднения напряжения в многослойной трубе определяются в работе [28].  [c.194]

При этих условиях главные оси напряженного состояния можно было считать неизменно совпадающими с определенными тремя направлениями, а именно 1) с направлением ребра гиба, 2) с направлением общей нормали к поверхностям листа, которое условились называть радиальным, 3) с направлением, перпендикулярным первым двум, которое условились называть тангенциальным. Три нормальных напряжения (в направлении ребра гиба) сг —(в направлении радиальном), ае (в направлении тангенциальном) являются главными напряжениями, а их значения зависят только от одной координаты г. Казалось бы на первый взгляд задача кругового гиба листа является простейшей задачей плоской пластической деформации в полярных координатах. Действительно, ее решение сводится к интегрированию простого по написанию обыкновенного дифференциального уравнения (условие равновесия)  [c.296]

В разделе II (главы 6—8) рассматриваются общие вопросы классической теории упругости обобщенный закон Гука, постановка и методы решения задач теории упругости, вариационные принципы и методы, плоская задача теории упругости в декартовых и полярных координатах, кручение стержней.  [c.4]


Сравнительно давно был рассмотрен класс плоских задач, определяемых заданием секундного объемного расхода Q из источника, помещенного в начале координат, и физических констант жидкости ц и р. В полярной системе координат (г, е), из соображений размерности, подробно изложенных в конце 87, вытекает, что решения этого типа задач 3) должны иметь следующую общую структуру  [c.534]

Общее решение плоской задачи в полярных координатах. Имея ешекия различных частных случаев плоской задачи в полярных координатах, мы теперь в состоянии дать общее решение задачи.  [c.129]

В первых пяти главах учебника рассматриваются общие вопросы теории упругости (теория напряжений и деформаций, основные соотношения и теоремы, постановка и лгетоды решения задач теории упругости, плоская задача в декартовых координатах, плоская задача в полярных координатах). В шестой и седьмой главах излагаются основные уравнения теории тонких пластин (гибких и жестких) и некоторые задачи изгиба и устойчивости пластин. Восьмая глава учебника посвящена рассмотрению приближенных методов решения задач прикладной теории упругости (вариационных, конечных разностей, конечных элементов). В девятой главе рассматриваются основы расчета тонких упругих оболочек, причем основное внимание уделено вопросам расчета безмоментных и пологих оболочек. В десятой главе изучаются основы теории пластичности. Здесь рассмотрена и теория расчета конструкций по предельнол1у состоянию.  [c.6]

В первой части курса излагается общ ая теория напряженного и деформированного состояния. Выводятся дифференциальные уравнения равновесия в напряжениях и перемещениях для трехмерной изотропной среды. Принцип возможных перемещений применяется для изотропного зшру-гого тела. При помощи методов, применяемых в курсе сопротивления материалов, исследуются растяжение, кручение и изгиб стержней. Как частный случай общей теории приводятся общие соотношения для плоской деформации и плоского напряженного состояния. Дано решение дифференциальных уравнений плоской задачи в целых полиномах, а также в гиперболотригонометрических функциях применительно к изгибу тонкой полосы. Разбирается случай полярных координат. Описано применение энергетического метода к плоской задаче.  [c.5]

При численном решении задачи несимметричного обтекания плоского контура методом интегральных соотношений возникают затруднения. В симметричной задаче граничными условиями для ЗN дифференциальных уравнений служат 2N условий симметрии течения на оси и N условий регулярности решения при прохождении особых точек. При несимметричном обтекании решение должно удовлетворять N условиям регулярности с каждой стороны тела, что дает 2N условий. Однако 2N условий симметрии при этом отсутствуют, что требует в общем случае наложения дополнительно N условий для определения решения. До настоящего времени нет способа выбора этих условий для N > 1. При ТУ = 1 задача о несимметричном обтекании плоской пластины решена А. М. Базжи-ным (1963). А. Н. Минайлос (1964) применил метод интегральных соотношений для расчета " сверхзвуков ого обтекания затупленного тела вращения под углом атаки. При этом он использовал осесимметричную систему координат типа применяющейся в теории пограничного слоя. Записав уравнения в дивергентной форме, А. Н. Минайлос аппроксимирует входящие в эти уравнения величины, как это делается ]ц в стандартном методе О. М. Белоцерковского, полиномами по координате, нормальной телу азимутальные же распределения параметров аппроксимируются рядами Фурье по полярному углу. В рядах Фурье, кроме постоянного члена, сохраняется лишь еще один член. При этом (ср. работу В. В. Сычева,  [c.174]



Смотреть страницы где упоминается термин Общее решение плоской задачи в полярных координатах : [c.360]   
Смотреть главы в:

Теория упругости  -> Общее решение плоской задачи в полярных координатах

Теория упругости Изд4  -> Общее решение плоской задачи в полярных координатах


Теория упругости (1937) -- [ c.129 ]



ПОИСК



Задача общая (задача

Координаты полярные

М тох решения плоской задачи

Плоская задача

Полярные координаты при плоской задаче

Полярный

Примеры применения общего решения плоской задачи в полярных координатах

Решение общей задачи

Решения плоские



© 2025 Mash-xxl.info Реклама на сайте