Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Чаплыгина Эйлера — Лагранжа

Введение в механику понятия квазикоординат и обобщение уравнений Лагранжа на квазикоординаты интересно тем, что оно позволило объединить в одной и той же форме обычные уравнения Лагранжа, уравнения движения неголономных систем и такие уравнения, как, например, динамические уравнения Эйлера движения твердого тела с закрепленной точкой ). Чтобы сделать очевидным важность этого обобщения не только с формальной стороны, заметим, что при исследовании движения конкретных механических систем существенную роль играет удачный выбор неизвестных параметров (обобщенных координат и квазикоординат), определяющих движение. Как известно, с использованием квазикоординат была поставлена и исследована задача Эйлера о движении по инерции твердого тела с закрепленной точкой. В квази-координатах же исследованы С. А. Чаплыгиным задача о плоском неголономном движении и трудная задача о качении неоднородного шара по плоскости. Квазикоординаты как некоторые кинематические характеристики движения, определяющие скорости движения точек системы, употреблялись в механике очень давно. Однако лишь на рубеже двадцатого века обобщенные координаты и эти кинематические параметры были объединены в одном общем понятии квазикоординат, а в подытоживающей работе Гамеля были получены уравнения движения в квазикоординатах, по форме написания близкие к уравнениям Лагранжа и применимые как к голономным, так и к неголономным системам ). Хотя по своему  [c.123]


Пуансо, Луи (3.1.1777-5.12.1859) — французский инженер, механик и математик. Дал геометрическую интерпретацию случая Эйлера, ввел понятия эллипсоида инерции, мгновенной оси вращения и связанные с ней понятия — полодий и герполодий (1851 г.). Привел геометрический анализ устойчивости вращения твердого тела вокруг главных осей эллипсоида инерции. Пуансо, в противовес Лагранжу, настаивал на преимуществе геометрических методов в механике над аналитическими — во всех этих решениях мы видим только вычисления без какой-либо ясной картины движения тела [252]. Идеи Пуансо далее были поддержаны и развиты П. Е. Жуковским и С. А. Чаплыгиным. Геометриче-  [c.21]

Замечание 4. Случаи интегрируемости уравнений на алгебре е(3), дополнительный интеграл которых зависит лишь от переменных М, типа случаев Лагранжа и Гесса для уравнений Эйлера-Пуассона или типа случаев Кирхгофа, Чаплыгина (II) для уравнений Кирхгофа, очевидным образом переносятся на системы на пучке скобок (2.4), включающих при х = 1 алгебру во(4). Это связано с тем, что уравнения для М для всех скобок пучка совпадают (см. ниже).  [c.186]

Уравнения движения в первых двух случаях подробно изучены с разных точек зрения в классических работах Эйлера, Пуансо, Лагранжа, Пуассона, Якоби. Случай Ковалевской нетривиален во многих отношениях. Он был найден Ковалевской из условия мероморфности решений уравнений Эйлера — Пуассона в комплексной плоскости времени. Случай Горячева — Чаплыгина намного проще его можно проинтегрировать с помощью разделения переменных. Покажем это.  [c.89]

Зарождение динамики неголономных систем, по-видимому, следует отнести к тому времени, когда всеобъемлющий и блестящий аналитический формализм, созданный трудами Эйлера и Лагранжа, оказался, к всеобщему удивлению, неприменимым к очень простым механическим задачам о качении без проскальзывания твердого тела по плоскости. Ошибка Е. Линделёфа, обнаруженная С. А. Чаплыгиным, получила известность, и системы с качением привлекли к себе внимание многих выдающихся ученых своего времени (С. А. Чаплыгин, В. Вольтерра, Г. Герц, Г. Маджи, П. В. Воронец, П. Аппель, Г. Гамель, И. Ценов, Д. К. Бобылев, Н. Е. Жуковский и др.). Более ранние работы Н. Феррерса, Д. Кортевега, К. Неймана были замечены не сразу. Интерес, возникший к разработке вопросов аналитической механики неголономных систем, сохранился в каком-то виде и до нашего времени, что видно из библиографии, приведенной в конце книги ).  [c.7]

Основы динамики свободных систем были заложены И. Ньютоном. Динамика свободных и несвободных систем развилась в XVIII в. на основе исследований Л. Эйлера, Ж. Даламбера, Ж. Лагранжа. В XIX в. большое значение имели исследования. Отроградского, Гамильтона, Пуассона, Гаусса, Якоби, Ляпунова, Чаплыгина и других. С именами этих ученых мы будем встречаться на протяжении всего дальнейшего изложения курса механики. Член Петербургской Академии наук Л. Эйлер развил аналитические методы исследования, прежде всего, свободных систем.  [c.36]


Последующее развитие механики, опирающееся на дифференциальное и интегральное исчисления, связано с разработкой аналитических методов, основы которых были заложены трудами Л. Эйлера (1707—1783), Ж. Да-ламбера (1717-1783), Ж. Лагранжа (1736-1813). Огромное значение для дальнейшего развития механики имели работы выдающихся отечественных ученых М. В, Остроградского (1801 — 1862), П. Л. Чебышева (1821-1894), С. В. Ковалевской (1850-1891), А. М. Ляпунова (1857—1918), И. В. Мещерского (1859—1935), К. Э. Циолковского (1857—1935), А, Н. Крылова (1863— 1945), Н. Е. HtyKOB Koro (1847—1921), С. А. Чаплыгина (1869—1942) и многих других русских и советских ученых. За годы советской власти механика в нашей стране получила свое дальнейшее развитие. Благодаря блестящим достижениям советской науки и техники началась новая эра человечества — эра исследования и покорения космоса.  [c.10]

Горак и А. Вундхейлер составили в инвариантной форме для линейных неголономных систем первого порядка со склерономными и реономными связями в голономных и неголономных, склерономных и реономных координатах различные варианты уравнений Ньютона, Лагранжа — Эйлера, Аппеля— Гиббса, Больцмана, Чаплыгина — Воронца, Ценова, уравнения в естественной форме. Составление обобщенных уравнений Ньютона в инвариантной форме, представляющих собой частный случай уравнений Го-96 рака, принадлежит Г. Вранчеану, Дж. Сингу и И. Схоутену .  [c.96]

Горак выводит для склерономной и реономной неголономных систем в голономных и неголономных координатах, а также в склерономных параметрах обобщенные уравнения Ньютона, Лагранжа — Эйлера и Аппеля — Гиббса. Из этих уравнений получаются как частные случаи уравнения Больцмана, Чаплыгина — Воронца, Ценова и др. Из уравнений Горака можно получить также обобщенный принцип Гамильтона — Остроградского и обобщенные уравнения неголономной динамики в канонической и естественной формах. С целью упрощения установленных им уравнений 3. Горак строит неголономное многообразие со специальной метрикой — вселенную системы. Во вселенной системы, как оказывается, уравнения Лагранжа—Эйлера и Аппеля — Гиббса получают весьма простой вид. Во вселенной обобщаются также вариационные принципы механики — принципы Гаусса — Герца наименьшей кривизны и Гамильтона — Остроградского наименьшего действия. 3. Горак показывает, что принцип Гамильтона — Остроградского эквивалентен уравнениям линии вселенной . Рассматривая время как временной параметр и вводя понятие пространственно-временной силы , 3. Го-раку удалось значительно упростить выражения дифференциальных урав- 105 нений движения неголономной системы.  [c.105]

Наибольший интерес и наибольшие трудности в решении представляет задача о движении твердого тела около неподвижной точки. Задача эта, несмотря на замечательные результаты Л. Эйлера (1707—1783), Ж. Лагранжа (1736—1813), С. Пуассона (1781 — 1840), Л. Пуансо (1777—1859) и в более позднее время С. В. Ковалевской (1850—1891), А. Пуанкаре (1854—1912), С. А. Чаплыгина (1869—1942) и многих крупных современных ученых, еще далека от своего полного завершеиня.  [c.369]

В заключение отметим еще одно важное применение теоремы 1, С. Л, Зиглин доказал, что дополнительный мероморфный интеграл уравнений Эйлера — Пуассона задачи о вращении тяжелого твердого тела с неподвижной точкой существует только в трех классических случаях Эйлера, Лагранжа и Ковалевской. Если зафиксировать нулевое значение постоянной площадей, то к этим случаям надо добавить еще случай Горячева—Чаплыгина. Этот результат также основан на анализе уравнений в вариациях для некоторых частных решений уравнений Эйлера — Пуассона [64].  [c.371]

Основные результаты по неинтегрируемости уравнений Эйлера-Пуассона принадлежат В. В. Козлову, С. Л. Зиглину, С. В. Болотину. Они обсуждаются в книгах [92, 97] и связаны с расщеплением асимптотических поверхностей, ветвлением решений на комплексной плоскости времени, рождением большого числа невырожденных периодических решений. Вершиной этого направления являлась бы теорема, что общие случаи существования дополнительного вещественно-аналитического интеграла исчерпываются случаями Эйлера, Лагранжа и Ковалевской, а для частных интегралов к ним надо добавить случай Горячева-Чаплыгина. К сожалению, в полном объеме эта гипотеза до сих пор не доказана, несмотря на отдельные и довольно существенные продвижения [97].  [c.90]


Следуя А. М. Ляпунову, С. Л. Зиглии применил эти результаты к задаче о вращении тяжелого твердого тела вокруг неподвижной точки. Оказалось, что дополнительный голоморфный (и даже мероморфный) интеграл существует только в трех классических случаях Эйлера, Лагранжа и Ковалевской. Если зафиксировать нулевое значение постоянной площадей, то к этим случаям надо добавить еще случай Горячева—Чаплыгина.  [c.263]


Смотреть страницы где упоминается термин Чаплыгина Эйлера — Лагранжа : [c.240]    [c.245]   
Аналитическая механика (1961) -- [ c.369 , c.411 ]



ПОИСК



Лагранжа Эйлера

Чаплыгин

Эйлер

Эйлера лагранжев

Эйлера эйлеров



© 2025 Mash-xxl.info Реклама на сайте